ASCNet-ECG: Deep Autoencoder based Attention aware Skip Connection
network for ECG filtering
- URL: http://arxiv.org/abs/2303.15960v1
- Date: Tue, 28 Mar 2023 13:23:03 GMT
- Title: ASCNet-ECG: Deep Autoencoder based Attention aware Skip Connection
network for ECG filtering
- Authors: Raghavendra Badiger, M. Prabhakar
- Abstract summary: This work presents a deep learning-based scheme for ECG signal filtering.
The data is processed through the encoder and decoder layer to reconstruct by eliminating noises.
The proposed architecture uses a modified ReLU function to improve the learning of attributes.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, the telehealth monitoring field has gained huge attention due to
its noteworthy use in day-to-day life. This advancement has led to an increase
in the data collection of electrophysiological signals. Due to this
advancement, electrocardiogram (ECG) signal monitoring has become a leading
task in the medical field. ECG plays an important role in the medical field by
analysing cardiac physiology and abnormalities. However, these signals are
affected due to numerous varieties of noises, such as electrode motion,
baseline wander and white noise etc., which affects the diagnosis accuracy.
Therefore, filtering ECG signals became an important task. Currently, deep
learning schemes are widely employed in signal-filtering tasks due to their
efficient architecture of feature learning. This work presents a deep
learning-based scheme for ECG signal filtering, which is based on the deep
autoencoder module. According to this scheme, the data is processed through the
encoder and decoder layer to reconstruct by eliminating noises. The proposed
deep learning architecture uses a modified ReLU function to improve the
learning of attributes because standard ReLU cannot adapt to huge variations.
Further, a skip connection is also incorporated in the proposed architecture,
which retains the key feature of the encoder layer while mapping these features
to the decoder layer. Similarly, an attention model is also included, which
performs channel and spatial attention, which generates the robust map by using
channel and average pooling operations, resulting in improving the learning
performance. The proposed approach is tested on a publicly available MIT-BIH
dataset where different types of noise, such as electrode motion, baseline
water and motion artifacts, are added to the original signal at varied SNR
levels.
Related papers
- The Rlign Algorithm for Enhanced Electrocardiogram Analysis through R-Peak Alignment for Explainable Classification and Clustering [34.88496713576635]
We aim to reintroduce shallow learning techniques, including support vector machines and principal components analysis, into ECG signal processing.
To this end, we developed and evaluated a transformation that effectively restructures ECG signals into a fully structured format.
Our approach demonstrates a significant advantage for shallow machine learning methods over CNNs, especially when dealing with limited training data.
arXiv Detail & Related papers (2024-07-22T11:34:47Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
A novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification.
The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition.
arXiv Detail & Related papers (2023-07-25T19:47:26Z) - Joint Channel Estimation and Feedback with Masked Token Transformers in
Massive MIMO Systems [74.52117784544758]
This paper proposes an encoder-decoder based network that unveils the intrinsic frequency-domain correlation within the CSI matrix.
The entire encoder-decoder network is utilized for channel compression.
Our method outperforms state-of-the-art channel estimation and feedback techniques in joint tasks.
arXiv Detail & Related papers (2023-06-08T06:15:17Z) - GeoECG: Data Augmentation via Wasserstein Geodesic Perturbation for
Robust Electrocardiogram Prediction [20.8603653664403]
We propose a physiologically-inspired data augmentation method to improve performance and increase the robustness of heart disease detection based on ECG signals.
We obtain augmented samples by perturbing the data distribution towards other classes along the geodesic in Wasserstein space.
Learning from 12-lead ECG signals, our model is able to distinguish five categories of cardiac conditions.
arXiv Detail & Related papers (2022-08-02T03:14:13Z) - Effective classification of ecg signals using enhanced convolutional
neural network in iot [0.0]
This paper proposes a routing system for IoT healthcare platforms based on Dynamic Source Routing (DSR) and Routing by Energy and Link Quality (REL)
Deep-ECG will employ a deep CNN to extract important characteristics, which will then be compared using simple and fast distance functions.
The results show that the proposed strategy outperforms others in terms of classification accuracy.
arXiv Detail & Related papers (2022-02-08T13:37:23Z) - Robust learning from corrupted EEG with dynamic spatial filtering [68.82260713085522]
Building machine learning models using EEG recorded outside of the laboratory requires robust methods to noisy data and randomly missing channels.
We propose dynamic spatial filtering (DSF), a multi-head attention module that can be plugged in before the first layer of a neural network.
We tested DSF on public EEG data encompassing 4,000 recordings with simulated channel corruption and on a private dataset of 100 at-home recordings of mobile EEG with natural corruption.
arXiv Detail & Related papers (2021-05-27T02:33:16Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
We present a bioacoustic signal classifier equipped with a discriminative mechanism to extract useful features for analysis and classification efficiently.
Unlike current bioacoustic recognition methods, which are task-oriented, the proposed model relies on transforming the input signals into vector subspaces.
The validity of the proposed method is verified using three challenging bioacoustic datasets containing anuran, bee, and mosquito species.
arXiv Detail & Related papers (2021-03-18T11:01:21Z) - SE-ECGNet: A Multi-scale Deep Residual Network with
Squeeze-and-Excitation Module for ECG Signal Classification [6.124438924401066]
We develop a multi-scale deep residual network for the ECG signal classification task.
We are the first to propose to treat the multi-lead signal as a 2-dimensional matrix.
Our proposed model achieves 99.2% F1-score in the MIT-BIH dataset and 89.4% F1-score in Alibaba dataset.
arXiv Detail & Related papers (2020-12-10T08:37:44Z) - ECG-DelNet: Delineation of Ambulatory Electrocardiograms with Mixed
Quality Labeling Using Neural Networks [69.25956542388653]
Deep learning (DL) algorithms are gaining weight in academic and industrial settings.
We demonstrate DL can be successfully applied to low interpretative tasks by embedding ECG detection and delineation onto a segmentation framework.
The model was trained using PhysioNet's QT database, comprised of 105 ambulatory ECG recordings.
arXiv Detail & Related papers (2020-05-11T16:29:12Z) - Multi-Lead ECG Classification via an Information-Based Attention
Convolutional Neural Network [1.1720399305661802]
One-dimensional convolutional neural networks (CNN) have proven to be effective in pervasive classification tasks.
We implement the Residual connection and design a structure which can learn the weights from the information contained in different channels in the input feature map.
An indicator named mean square deviation is introduced to monitor the performance of a particular model segment in the classification task.
arXiv Detail & Related papers (2020-03-25T02:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.