Fast Bit-Flipping based on a Stability Transition of Coupled Spins
- URL: http://arxiv.org/abs/2303.16171v2
- Date: Mon, 16 Oct 2023 07:27:40 GMT
- Title: Fast Bit-Flipping based on a Stability Transition of Coupled Spins
- Authors: Maximilian F. I. Kieler and Arnd B\"acker
- Abstract summary: A bipartite spin system is proposed for which a fast transfer from one defined state into another exists.
For sufficient coupling between the spins, this implements a bit-flipping mechanism which is much faster than that induced by tunneling.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A bipartite spin system is proposed for which a fast transfer from one
defined state into another exists. For sufficient coupling between the spins,
this implements a bit-flipping mechanism which is much faster than that induced
by tunneling. The states correspond in the semiclassical limit to equilibrium
points with a stability transition from elliptic-elliptic stability to complex
instability for increased coupling. The fast transfer is due to the spiraling
characteristics of the complex unstable dynamics. Based on the classical system
we find a universal scaling for the transfer time, which even applies in the
deep quantum regime. By investigating a simple model system, we show that the
classical stability transition is reflected in a fundamental change of the
structure of the eigenfunctions.
Related papers
- Twist-and-turn dynamics of spin squeezing in bosonic Josephson junctions: Enhanced shortcuts-to-adiabaticity approach [0.0]
We show how to generate spin-squeezed states using shortcuts to adiabaticity (STA) and the recently developed enhanced version thereof (eSTA)
We show that the eSTA approach allows for a particularly robust realization of strongly spin-squeezed states in this system.
Our method could also be employed for the generation of metrologically-useful non-Gaussian states.
arXiv Detail & Related papers (2024-04-30T16:24:43Z) - Impact of dephasing on non-equilibrium steady-state transport in
fermionic chains with long-range hopping [0.0]
We investigate the impact of dephasing on the non-equilibrium steady-state transport properties of non-interacting fermions on a one-dimensional lattice.
We find a crossover from logarithmic to power-law system-size dependence in the non-equilibrium steady-state resistance when $alpha$ varies from $alpha leq 1$ to $alpha lesssim 1.5$.
arXiv Detail & Related papers (2023-10-02T16:39:24Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Instabilities of interacting matter waves in optical lattices with
Floquet driving [0.0]
We experimentally investigate the stability of a quantum gas with repulsive interactions in an optical 1D lattice subjected to periodic driving.
We expand the established analysis based on parametric instabilities to include modulational instabilities.
Our results allow us to predict stable and unstable parameter regions for the minimization of heating in future applications of Floquet driving.
arXiv Detail & Related papers (2023-03-10T17:19:19Z) - Sufficient condition for gapless spin-boson Lindbladians, and its
connection to dissipative time-crystals [64.76138964691705]
We discuss a sufficient condition for gapless excitations in the Lindbladian master equation for collective spin-boson systems.
We argue that gapless modes can lead to persistent dynamics in the spin observables with the possible formation of dissipative time-crystals.
arXiv Detail & Related papers (2022-09-26T18:34:59Z) - Tunable Non-equilibrium Phase Transitions between Spatial and Temporal
Order through Dissipation [3.190771753066767]
We propose an experiment with a driven quantum gas coupled to a dissipative cavity that realizes a far-from-equilibrium phase transition between spatial and temporal order.
For negative detunings, the system features a spatially ordered phase, while positive detunings lead to a phase with both spatial order and persistent oscillations, which we call dissipative-temporal lattice.
In both the atoms are subject to an accelerated transport, either via a uniform acceleration or via abrupt transitions to higher momentum states.
arXiv Detail & Related papers (2022-05-03T12:52:11Z) - Entanglement and correlations in fast collective neutrino flavor
oscillations [68.8204255655161]
Collective neutrino oscillations play a crucial role in transporting lepton flavor in astrophysical settings.
We study the full out-of-equilibrium flavor dynamics in simple multi-angle geometries displaying fast oscillations.
We present evidence that these fast collective modes are generated by the same dynamical phase transition.
arXiv Detail & Related papers (2022-03-05T17:00:06Z) - Feedback-induced instabilities and dynamics in the Jaynes-Cummings model [62.997667081978825]
We investigate the coherence and steady-state properties of the Jaynes-Cummings model subjected to time-delayed coherent feedback.
The introduced feedback qualitatively modifies the dynamical response and steady-state quantum properties of the system.
arXiv Detail & Related papers (2020-06-20T10:07:01Z) - Universality of entanglement transitions from stroboscopic to continuous
measurements [68.8204255655161]
We show that the entanglement transition at finite coupling persists if the continuously measured system is randomly nonintegrable.
This provides a bridge between a wide range of experimental settings and the wealth of knowledge accumulated for the latter systems.
arXiv Detail & Related papers (2020-05-04T21:45:59Z) - Long-range interaction in an open boundary-driven Heisenberg spin
lattice: A far-from-equilibrium transition to ballistic transport [62.997667081978825]
We study an open Heisenberg XXZ spin chain with long-range Ising-type interaction.
We find that the chain lengths for this transition are increasing with decreasing range of the Ising-type interactions between distant spins.
The transition can be explained by the suppression of ferromagnetic domains at the edges of the chain.
arXiv Detail & Related papers (2020-04-27T12:22:50Z) - Study of the spin kitten states in a strongly coupled spin-oscillator
system [0.0]
A bipartite qudit-oscillator Hamiltonian is explicitly studied for low spin values in both strong and ultrastrong coupling regimes.
In the strong coupling regime the qudit entropy displays a pattern of quasiperiodic collapses and revivals.
The emergence of the spin squeezed states during the bipartite evolution is observed.
arXiv Detail & Related papers (2020-04-02T17:38:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.