Tunable Non-equilibrium Phase Transitions between Spatial and Temporal
Order through Dissipation
- URL: http://arxiv.org/abs/2205.01461v1
- Date: Tue, 3 May 2022 12:52:11 GMT
- Title: Tunable Non-equilibrium Phase Transitions between Spatial and Temporal
Order through Dissipation
- Authors: Zhao Zhang, Davide Dreon, Tilman Esslinger, Dieter Jaksch, Berislav
Buca, Tobias Donner
- Abstract summary: We propose an experiment with a driven quantum gas coupled to a dissipative cavity that realizes a far-from-equilibrium phase transition between spatial and temporal order.
For negative detunings, the system features a spatially ordered phase, while positive detunings lead to a phase with both spatial order and persistent oscillations, which we call dissipative-temporal lattice.
In both the atoms are subject to an accelerated transport, either via a uniform acceleration or via abrupt transitions to higher momentum states.
- Score: 3.190771753066767
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose an experiment with a driven quantum gas coupled to a dissipative
optical cavity that realizes a novel kind of far-from-equilibrium phase
transition between spatial and temporal order. The control parameter of the
transition is the detuning between the drive frequency and the cavity
resonance. For negative detunings, the system features a spatially ordered
phase, while positive detunings lead to a phase with both spatial order and
persistent oscillations, which we call dissipative spatio-temporal lattice. We
give numerical and analytical evidence for this superradiant phase transition
and show that the spatio-temporal lattice originates from cavity dissipation.
In both regimes the atoms are subject to an accelerated transport, either via a
uniform acceleration or via abrupt transitions to higher momentum states. Our
work provides perspectives for temporal phases of matter that are not possible
at equilibrium.
Related papers
- Probing quantum floating phases in Rydberg atom arrays [61.242961328078245]
We experimentally observe the emergence of the quantum floating phase in 92 neutral-atom qubits.
The site-resolved measurement reveals the formation of domain walls within the commensurate ordered phase.
As the experimental system sizes increase, we show that the wave vectors approach a continuum of values incommensurate with the lattice.
arXiv Detail & Related papers (2024-01-16T03:26:36Z) - Chaotic fluctuations in a universal set of transmon qubit gates [37.69303106863453]
Transmon qubits arise from the quantization of nonlinear resonators.
Fast entangling gates, operating at speeds close to the so-called quantum speed limit, contain transient regimes where the dynamics indeed becomes partially chaotic for just two transmons.
arXiv Detail & Related papers (2023-11-24T16:30:56Z) - Entanglement phase transitions in non-Hermitian Floquet systems [0.0]
In this work, we reveal entanglement transitions in the context of non-Hermitian Floquet systems.
We find that the monotonic increase of quenched hopping amplitude could flip the system between volume-law and area-law entangled Floquet phases.
Our findings build a foundation for exploring entanglement phase transitions in Floquet non-Hermitian setups.
arXiv Detail & Related papers (2023-10-17T15:40:12Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - The Sub-Exponential Critical Slowing Down at Floquet Time Crystal Phase
Transition [4.353446104859767]
We study critical dynamics near the Floquet time crystal phase transition.
Its critical behavior is described by introducing a space-time coarse grained correlation function.
We show the relaxation time has a universal sub-exponential scaling near the critical point.
arXiv Detail & Related papers (2023-01-17T13:28:32Z) - Wave manipulation via delay-engineered periodic potentials [55.41644538483948]
We discuss the semi-classical transverse trapping of waves by means of an inhomogeneous gauge field.
We show that, due to the Kapitza effect, an effective potential proportional to the square of the transverse derivative of the delay arises.
arXiv Detail & Related papers (2022-07-27T11:45:32Z) - Out-of-time-order correlator in the quantum Rabi model [62.997667081978825]
We show that out-of-time-order correlator derived from the Loschmidt echo signal quickly saturates in the normal phase.
We show that the effective time-averaged dimension of the quantum Rabi system can be large compared to the spin system size.
arXiv Detail & Related papers (2022-01-17T10:56:57Z) - Rotation-driven transition into coexistent Josephson modes in an
atomtronic dc-SQUID [0.0]
We show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system.
In particular, we show that within a determined rotation frequency interval, a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics.
arXiv Detail & Related papers (2021-11-19T14:47:54Z) - Dissipative Floquet Dynamics: from Steady State to Measurement Induced
Criticality in Trapped-ion Chains [0.0]
Quantum systems evolving unitarily and subject to quantum measurements exhibit various types of non-equilibrium phase transitions.
Dissipative phase transitions in steady states of time-independent Liouvillians and measurement induced phase transitions are two primary examples.
We show that a dissipative phase transition between a ferromagnetic ordered phase and a paramagnetic disordered phase emerges for long-range systems.
arXiv Detail & Related papers (2021-07-12T18:18:54Z) - Nonequilibrium phase transition in a driven-dissipative quantum
antiferromagnet [0.0]
This paper provides a numerical study of dynamical phases and the transitions between them in the nonequilibrium steady state of the prototypical two-dimensional Heisenberg antiferromagnet with drive and dissipation.
A finite-size analysis reveals static and dynamical critical scaling at the transition, with a discontinuous slope of the magnon number versus driving field strength and critical slowing down at the transition point.
arXiv Detail & Related papers (2021-07-08T13:35:00Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.