論文の概要: Visual Chain-of-Thought Diffusion Models
- arxiv url: http://arxiv.org/abs/2303.16187v1
- Date: Tue, 28 Mar 2023 17:53:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-29 14:05:02.836797
- Title: Visual Chain-of-Thought Diffusion Models
- Title(参考訳): ビジュアル・チェーン・オブ・サート拡散モデル
- Authors: William Harvey and Frank Wood
- Abstract要約: 2段階サンプリング手法を用いて条件付きモデルと条件なしモデルとのギャップを埋めることを提案する。
これにより、条件拡散モデルの非条件生成タスクのパワーを活用し、標準の非条件生成と比較してFIDを25-50%改善することを示す。
- 参考スコア(独自算出の注目度): 15.547439887203613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress with conditional image diffusion models has been stunning,
and this holds true whether we are speaking about models conditioned on a text
description, a scene layout, or a sketch. Unconditional image diffusion models
are also improving but lag behind, as do diffusion models which are conditioned
on lower-dimensional features like class labels. We propose to close the gap
between conditional and unconditional models using a two-stage sampling
procedure. In the first stage we sample an embedding describing the semantic
content of the image. In the second stage we sample the image conditioned on
this embedding and then discard the embedding. Doing so lets us leverage the
power of conditional diffusion models on the unconditional generation task,
which we show improves FID by 25-50% compared to standard unconditional
generation.
- Abstract(参考訳): 条件付き画像拡散モデルによる最近の進歩は見事であり、テキスト記述やシーンレイアウト、スケッチで条件付けられたモデルについて話しているかは事実である。
非条件画像拡散モデルも改善されているが遅れており、クラスラベルのような低次元の特徴に基づく拡散モデルも同様である。
条件付きモデルと非条件型モデルのギャップを2段階サンプリング法を用いて閉じる。
最初の段階では、画像の意味的内容を記述する埋め込みをサンプリングする。
第2段階では、この埋め込みに条件付きイメージをサンプリングし、埋め込みを破棄する。
これにより、条件拡散モデルの非条件生成タスクのパワーを活用し、標準の非条件生成と比較してFIDを25-50%改善することを示す。
関連論文リスト
- Don't drop your samples! Coherence-aware training benefits Conditional diffusion [17.349357521783062]
Coherence-Aware Diffusion (CAD) は条件情報のコヒーレンスを拡散モデルに統合する新しい手法である。
CADは理論的に健全であり,様々な条件生成タスクに対して実験的に有効であることを示す。
論文 参考訳(メタデータ) (2024-05-30T17:57:26Z) - Steered Diffusion: A Generalized Framework for Plug-and-Play Conditional
Image Synthesis [62.07413805483241]
Steered Diffusionは、無条件生成のために訓練された拡散モデルを用いたゼロショット条件画像生成のためのフレームワークである。
塗装,着色,テキスト誘導セマンティック編集,画像超解像などのタスクに対して,ステアリング拡散を用いた実験を行った。
論文 参考訳(メタデータ) (2023-09-30T02:03:22Z) - Conditional Generation from Unconditional Diffusion Models using
Denoiser Representations [94.04631421741986]
本稿では,学習したデノイザネットワークの内部表現を用いて,事前学習した非条件拡散モデルを新しい条件に適用することを提案する。
提案手法により生成した合成画像を用いたTiny ImageNetトレーニングセットの強化により,ResNetベースラインの分類精度が最大8%向上することを示す。
論文 参考訳(メタデータ) (2023-06-02T20:09:57Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Bi-Noising Diffusion: Towards Conditional Diffusion Models with
Generative Restoration Priors [64.24948495708337]
本研究では,事前訓練した非条件拡散モデルを用いて,予測サンプルをトレーニングデータ多様体に導入する手法を提案する。
我々は,超解像,着色,乱流除去,画像劣化作業におけるアプローチの有効性を実証するための総合的な実験を行った。
論文 参考訳(メタデータ) (2022-12-14T17:26:35Z) - ADIR: Adaptive Diffusion for Image Reconstruction [46.838084286784195]
本研究では,拡散モデルによる事前学習を利用した条件付きサンプリング手法を提案する。
次に、事前学習した拡散分極ネットワークを入力に適応させる新しいアプローチと組み合わせる。
画像再構成手法の適応拡散は,超高解像度,デブロアリング,テキストベースの編集タスクにおいて,大幅な改善が達成されていることを示す。
論文 参考訳(メタデータ) (2022-12-06T18:39:58Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
そこで本研究では,分類器を含まない誘導拡散モデルから抽出し易いモデルへ抽出する手法を提案する。
画素空間上で訓練された標準拡散モデルに対して,本手法は元のモデルに匹敵する画像を生成することができる。
遅延空間で訓練された拡散モデル(例えば、安定拡散)に対して、我々の手法は1から4段階のデノナイジングステップで高忠実度画像を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T18:03:56Z) - D2C: Diffusion-Denoising Models for Few-shot Conditional Generation [109.68228014811443]
コントラスト表現を用いた拡散復号モデル(D2C)について述べる。
D2Cは、学習した拡散に基づく遅延表現を用いて、表現品質を改善するために、生成と対照的な自己教師付き学習を改善する。
条件付き画像操作では、D2C世代はStyleGAN2世代よりも2桁早く生成でき、二重盲検でヒト評価者の50%から60%が好んでいる。
論文 参考訳(メタデータ) (2021-06-12T16:32:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。