mHealth hyperspectral learning for instantaneous spatiospectral imaging
of hemodynamics
- URL: http://arxiv.org/abs/2303.16205v2
- Date: Wed, 5 Apr 2023 15:22:32 GMT
- Title: mHealth hyperspectral learning for instantaneous spatiospectral imaging
of hemodynamics
- Authors: Yuhyun Ji, Sang Mok Park, Semin Kwon, Jung Woo Leem, Vidhya
Vijayakrishnan Nair, Yunjie Tong, and Young L. Kim
- Abstract summary: Hyperspectral learning exploits idea that a photograph is more than merely a picture and contains detailed spectral information.
A small sampling of hyperspectral data enables spectrally informed learning to recover a hypercube from an RGB image.
Hyperspectral learning is capable of recovering full spectroscopic resolution in the hypercube, comparable to high spectral resolutions of scientific spectrometers.
- Score: 0.2638512174804417
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hyperspectral imaging acquires data in both the spatial and frequency domains
to offer abundant physical or biological information. However, conventional
hyperspectral imaging has intrinsic limitations of bulky instruments, slow data
acquisition rate, and spatiospectral tradeoff. Here we introduce hyperspectral
learning for snapshot hyperspectral imaging in which sampled hyperspectral data
in a small subarea are incorporated into a learning algorithm to recover the
hypercube. Hyperspectral learning exploits the idea that a photograph is more
than merely a picture and contains detailed spectral information. A small
sampling of hyperspectral data enables spectrally informed learning to recover
a hypercube from an RGB image. Hyperspectral learning is capable of recovering
full spectroscopic resolution in the hypercube, comparable to high spectral
resolutions of scientific spectrometers. Hyperspectral learning also enables
ultrafast dynamic imaging, leveraging ultraslow video recording in an
off-the-shelf smartphone, given that a video comprises a time series of
multiple RGB images. To demonstrate its versatility, an experimental model of
vascular development is used to extract hemodynamic parameters via statistical
and deep-learning approaches. Subsequently, the hemodynamics of peripheral
microcirculation is assessed at an ultrafast temporal resolution up to a
millisecond, using a conventional smartphone camera. This spectrally informed
learning method is analogous to compressed sensing; however, it further allows
for reliable hypercube recovery and key feature extractions with a transparent
learning algorithm. This learning-powered snapshot hyperspectral imaging method
yields high spectral and temporal resolutions and eliminates the spatiospectral
tradeoff, offering simple hardware requirements and potential applications of
various machine-learning techniques.
Related papers
- A self-supervised and adversarial approach to hyperspectral demosaicking and RGB reconstruction in surgical imaging [3.426432165500852]
Hyperspectral imaging holds promises in surgical imaging by offering biological tissue differentiation capabilities with detailed information that is invisible to the naked eye.
For intra-operative guidance, real-time spectral data capture and display is mandated. Snapshot mosaic hyperspectral cameras are currently seen as the most suitable technology given this requirement.
We present a self-supervised demosaicking and RGB reconstruction method that does not depend on paired high-resolution data as ground truth.
arXiv Detail & Related papers (2024-07-27T15:29:35Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
We present S2ADet, an object detector that harnesses the rich spectral and spatial complementary information inherent in hyperspectral images.
S2ADet surpasses existing state-of-the-art methods, achieving robust and reliable results.
arXiv Detail & Related papers (2023-06-14T09:01:50Z) - Spatial gradient consistency for unsupervised learning of hyperspectral
demosaicking: Application to surgical imaging [4.795951381086172]
Hyperspectral imaging has the potential to improve tissue characterisation in real-time and with high-resolution.
A demosaicking algorithm is required to fully recover the spatial and spectral information of the snapshot images.
We present a fully unsupervised hyperspectral image demosaicking algorithm which only requires snapshot images for training purposes.
arXiv Detail & Related papers (2023-02-21T18:07:14Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
Beamforming, the process of mapping received ultrasound echoes to the spatial image domain, lies at the heart of the ultrasound image formation chain.
Modern ultrasound imaging leans heavily on innovations in powerful digital receive channel processing.
Deep learning methods can play a compelling role in the digital beamforming pipeline.
arXiv Detail & Related papers (2021-09-23T15:15:21Z) - Deep Learning Approach for Hyperspectral Image Demosaicking, Spectral
Correction and High-resolution RGB Reconstruction [3.0478210530038443]
We propose a deep learning-based image demosaicking algorithm for snapshot hyperspectral images using supervised learning methods.
Due to the lack of publicly available medical images, a synthetic image generation approach is proposed to simulate snapshot images from existing medical image datasets.
The resulting demosaicked images are evaluated both quantitatively and qualitatively, showing clear improvements in image quality.
arXiv Detail & Related papers (2021-09-03T09:50:03Z) - ShuffleUNet: Super resolution of diffusion-weighted MRIs using deep
learning [47.68307909984442]
Single Image Super-Resolution (SISR) is a technique aimed to obtain high-resolution (HR) details from one single low-resolution input image.
Deep learning extracts prior knowledge from big datasets and produces superior MRI images from the low-resolution counterparts.
arXiv Detail & Related papers (2021-02-25T14:52:23Z) - Spectral-Spatial Recurrent-Convolutional Networks for In-Vivo
Hyperspectral Tumor Type Classification [49.32653090178743]
We demonstrate the feasibility of in-vivo tumor type classification using hyperspectral imaging and deep learning.
Our best model achieves an AUC of 76.3%, significantly outperforming previous conventional and deep learning methods.
arXiv Detail & Related papers (2020-07-02T12:00:53Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
In this paper, we investigate how to adapt state-of-the-art residual learning based single gray/RGB image super-resolution approaches.
We introduce a spatial-spectral prior network (SSPN) to fully exploit the spatial information and the correlation between the spectra of the hyperspectral data.
Experimental results on some hyperspectral images demonstrate that the proposed SSPSR method enhances the details of the recovered high-resolution hyperspectral images.
arXiv Detail & Related papers (2020-05-18T14:25:50Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
We propose an approach for fusing hyperspectral and multispectral images to provide high-quality hyperspectral output.
We demonstrate that the proposed sparse fusion and reconstruction provides quantitatively superior results when compared to existing methods on publicly available images.
arXiv Detail & Related papers (2020-03-15T23:07:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.