Data Efficient Contrastive Learning in Histopathology using Active Sampling
- URL: http://arxiv.org/abs/2303.16247v4
- Date: Sat, 20 Jul 2024 23:29:28 GMT
- Title: Data Efficient Contrastive Learning in Histopathology using Active Sampling
- Authors: Tahsin Reasat, Asif Sushmit, David S. Smith,
- Abstract summary: Deep learning algorithms can provide robust quantitative analysis in digital pathology.
These algorithms require large amounts of annotated training data.
Self-supervised methods have been proposed to learn features using ad-hoc pretext tasks.
We propose a new method for actively sampling informative members from the training set using a small proxy network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Deep learning (DL) based diagnostics systems can provide accurate and robust quantitative analysis in digital pathology. These algorithms require large amounts of annotated training data which is impractical in pathology due to the high resolution of histopathological images. Hence, self-supervised methods have been proposed to learn features using ad-hoc pretext tasks. The self-supervised training process uses a large unlabeled dataset which makes the learning process time consuming. In this work, we propose a new method for actively sampling informative members from the training set using a small proxy network, decreasing sample requirement by 93% and training time by 62% while maintaining the same performance of the traditional self-supervised learning method. The code is available on https://github.com/Reasat/data_efficient_cl
Related papers
- An Efficient Contrastive Unimodal Pretraining Method for EHR Time Series Data [35.943089444017666]
We propose an efficient method of contrastive pretraining tailored for long clinical timeseries data.
Our model demonstrates the ability to impute missing measurements, providing clinicians with deeper insights into patient conditions.
arXiv Detail & Related papers (2024-10-11T19:05:25Z) - Incremental Self-training for Semi-supervised Learning [56.57057576885672]
IST is simple yet effective and fits existing self-training-based semi-supervised learning methods.
We verify the proposed IST on five datasets and two types of backbone, effectively improving the recognition accuracy and learning speed.
arXiv Detail & Related papers (2024-04-14T05:02:00Z) - BYOLMed3D: Self-Supervised Representation Learning of Medical Videos
using Gradient Accumulation Assisted 3D BYOL Framework [0.0]
Supervised learning algorithms require a large volumes of balanced data to learn robust representations.
Self-supervised learning algorithms are robust to imbalance in the data and are capable of learning robust representations.
We train a 3D BYOL self-supervised model using gradient accumulation technique to deal with the large number of samples in a batch generally required in a self-supervised algorithm.
arXiv Detail & Related papers (2022-07-31T14:48:06Z) - Low-Regret Active learning [64.36270166907788]
We develop an online learning algorithm for identifying unlabeled data points that are most informative for training.
At the core of our work is an efficient algorithm for sleeping experts that is tailored to achieve low regret on predictable (easy) instances.
arXiv Detail & Related papers (2021-04-06T22:53:45Z) - Few-Cost Salient Object Detection with Adversarial-Paced Learning [95.0220555274653]
This paper proposes to learn the effective salient object detection model based on the manual annotation on a few training images only.
We name this task as the few-cost salient object detection and propose an adversarial-paced learning (APL)-based framework to facilitate the few-cost learning scenario.
arXiv Detail & Related papers (2021-04-05T14:15:49Z) - Bayesian active learning for production, a systematic study and a
reusable library [85.32971950095742]
In this paper, we analyse the main drawbacks of current active learning techniques.
We do a systematic study on the effects of the most common issues of real-world datasets on the deep active learning process.
We derive two techniques that can speed up the active learning loop such as partial uncertainty sampling and larger query size.
arXiv Detail & Related papers (2020-06-17T14:51:11Z) - LRTD: Long-Range Temporal Dependency based Active Learning for Surgical
Workflow Recognition [67.86810761677403]
We propose a novel active learning method for cost-effective surgical video analysis.
Specifically, we propose a non-local recurrent convolutional network (NL-RCNet), which introduces non-local block to capture the long-range temporal dependency.
We validate our approach on a large surgical video dataset (Cholec80) by performing surgical workflow recognition task.
arXiv Detail & Related papers (2020-04-21T09:21:22Z) - Deep Reinforcement Learning for Adaptive Learning Systems [4.8685842576962095]
We formulate the problem of how to find an individualized learning plan based on learner's latent traits.
We apply a model-free deep reinforcement learning algorithm that can effectively find the optimal learning policy.
We also develop a transition model estimator that emulates the learner's learning process using neural networks.
arXiv Detail & Related papers (2020-04-17T18:04:03Z) - Confident Coreset for Active Learning in Medical Image Analysis [57.436224561482966]
We propose a novel active learning method, confident coreset, which considers both uncertainty and distribution for effectively selecting informative samples.
By comparative experiments on two medical image analysis tasks, we show that our method outperforms other active learning methods.
arXiv Detail & Related papers (2020-04-05T13:46:16Z) - Biologically-Motivated Deep Learning Method using Hierarchical
Competitive Learning [0.0]
I propose to introduce unsupervised competitive learning which only requires forward propagating signals as a pre-training method for CNNs.
The proposed method could be useful for a variety of poorly labeled data, for example, time series or medical data.
arXiv Detail & Related papers (2020-01-04T20:07:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.