Deep Reinforcement Learning for Adaptive Learning Systems
- URL: http://arxiv.org/abs/2004.08410v1
- Date: Fri, 17 Apr 2020 18:04:03 GMT
- Title: Deep Reinforcement Learning for Adaptive Learning Systems
- Authors: Xiao Li, Hanchen Xu, Jinming Zhang, Hua-hua Chang
- Abstract summary: We formulate the problem of how to find an individualized learning plan based on learner's latent traits.
We apply a model-free deep reinforcement learning algorithm that can effectively find the optimal learning policy.
We also develop a transition model estimator that emulates the learner's learning process using neural networks.
- Score: 4.8685842576962095
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we formulate the adaptive learning problem---the problem of
how to find an individualized learning plan (called policy) that chooses the
most appropriate learning materials based on learner's latent traits---faced in
adaptive learning systems as a Markov decision process (MDP). We assume latent
traits to be continuous with an unknown transition model. We apply a model-free
deep reinforcement learning algorithm---the deep Q-learning algorithm---that
can effectively find the optimal learning policy from data on learners'
learning process without knowing the actual transition model of the learners'
continuous latent traits. To efficiently utilize available data, we also
develop a transition model estimator that emulates the learner's learning
process using neural networks. The transition model estimator can be used in
the deep Q-learning algorithm so that it can more efficiently discover the
optimal learning policy for a learner. Numerical simulation studies verify that
the proposed algorithm is very efficient in finding a good learning policy,
especially with the aid of a transition model estimator, it can find the
optimal learning policy after training using a small number of learners.
Related papers
- Unlearnable Algorithms for In-context Learning [36.895152458323764]
In this paper, we focus on efficient unlearning methods for the task adaptation phase of a pretrained large language model.
We observe that an LLM's ability to do in-context learning for task adaptation allows for efficient exact unlearning of task adaptation training data.
We propose a new holistic measure of unlearning cost which accounts for varying inference costs.
arXiv Detail & Related papers (2024-02-01T16:43:04Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
Recent data-privacy laws have sparked interest in machine unlearning.
Challenge is to discard information about the forget'' data without altering knowledge about remaining dataset.
We adopt a projected-gradient based learning method, named as Projected-Gradient Unlearning (PGU)
We provide empirically evidence to demonstrate that our unlearning method can produce models that behave similar to models retrained from scratch across various metrics even when the training dataset is no longer accessible.
arXiv Detail & Related papers (2023-12-07T07:17:24Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Towards Scalable Adaptive Learning with Graph Neural Networks and
Reinforcement Learning [0.0]
We introduce a flexible and scalable approach towards the problem of learning path personalization.
Our model is a sequential recommender system based on a graph neural network.
Our results demonstrate that it can learn to make good recommendations in the small-data regime.
arXiv Detail & Related papers (2023-05-10T18:16:04Z) - Data Efficient Contrastive Learning in Histopathology using Active Sampling [0.0]
Deep learning algorithms can provide robust quantitative analysis in digital pathology.
These algorithms require large amounts of annotated training data.
Self-supervised methods have been proposed to learn features using ad-hoc pretext tasks.
We propose a new method for actively sampling informative members from the training set using a small proxy network.
arXiv Detail & Related papers (2023-03-28T18:51:22Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Interleaving Learning, with Application to Neural Architecture Search [12.317568257671427]
We propose a novel machine learning framework referred to as interleaving learning (IL)
In our framework, a set of models collaboratively learn a data encoder in an interleaving fashion.
We apply interleaving learning to search neural architectures for image classification on CIFAR-10, CIFAR-100, and ImageNet.
arXiv Detail & Related papers (2021-03-12T00:54:22Z) - Meta-learning the Learning Trends Shared Across Tasks [123.10294801296926]
Gradient-based meta-learning algorithms excel at quick adaptation to new tasks with limited data.
Existing meta-learning approaches only depend on the current task information during the adaptation.
We propose a 'Path-aware' model-agnostic meta-learning approach.
arXiv Detail & Related papers (2020-10-19T08:06:47Z) - META-Learning Eligibility Traces for More Sample Efficient Temporal
Difference Learning [2.0559497209595823]
We propose a meta-learning method for adjusting the eligibility trace parameter, in a state-dependent manner.
The adaptation is achieved with the help of auxiliary learners that learn distributional information about the update targets online.
We prove that, under some assumptions, the proposed method improves the overall quality of the update targets, by minimizing the overall target error.
arXiv Detail & Related papers (2020-06-16T03:41:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.