Communication-Efficient Vertical Federated Learning with Limited
Overlapping Samples
- URL: http://arxiv.org/abs/2303.16270v2
- Date: Thu, 30 Mar 2023 00:42:31 GMT
- Title: Communication-Efficient Vertical Federated Learning with Limited
Overlapping Samples
- Authors: Jingwei Sun, Ziyue Xu, Dong Yang, Vishwesh Nath, Wenqi Li, Can Zhao,
Daguang Xu, Yiran Chen, Holger R. Roth
- Abstract summary: We propose a vertical federated learning (VFL) framework called textbfone-shot VFL.
In our proposed framework, the clients only need to communicate with the server once or only a few times.
Our methods can improve the accuracy by more than 46.5% and reduce the communication cost by more than 330$times$ compared with state-of-the-art VFL methods.
- Score: 34.576230628844506
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a popular collaborative learning approach that enables
clients to train a global model without sharing their local data. Vertical
federated learning (VFL) deals with scenarios in which the data on clients have
different feature spaces but share some overlapping samples. Existing VFL
approaches suffer from high communication costs and cannot deal efficiently
with limited overlapping samples commonly seen in the real world. We propose a
practical vertical federated learning (VFL) framework called \textbf{one-shot
VFL} that can solve the communication bottleneck and the problem of limited
overlapping samples simultaneously based on semi-supervised learning. We also
propose \textbf{few-shot VFL} to improve the accuracy further with just one
more communication round between the server and the clients. In our proposed
framework, the clients only need to communicate with the server once or only a
few times. We evaluate the proposed VFL framework on both image and tabular
datasets. Our methods can improve the accuracy by more than 46.5\% and reduce
the communication cost by more than 330$\times$ compared with state-of-the-art
VFL methods when evaluated on CIFAR-10. Our code will be made publicly
available at \url{https://nvidia.github.io/NVFlare/research/one-shot-vfl}.
Related papers
- Prune at the Clients, Not the Server: Accelerated Sparse Training in Federated Learning [56.21666819468249]
Resource constraints of clients and communication costs pose major problems for training large models in Federated Learning.
We introduce Sparse-ProxSkip, which combines training and acceleration in a sparse setting.
We demonstrate the good performance of Sparse-ProxSkip in extensive experiments.
arXiv Detail & Related papers (2024-05-31T05:21:12Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - HierSFL: Local Differential Privacy-aided Split Federated Learning in
Mobile Edge Computing [7.180235086275924]
Federated Learning is a promising approach for learning from user data while preserving data privacy.
Split Federated Learning is utilized, where clients upload their intermediate model training outcomes to a cloud server for collaborative server-client model training.
This methodology facilitates resource-constrained clients' participation in model training but also increases the training time and communication overhead.
We propose a novel algorithm, called Hierarchical Split Federated Learning (HierSFL), that amalgamates models at the edge and cloud phases.
arXiv Detail & Related papers (2024-01-16T09:34:10Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
Federated learning (FL) enables multiple participants to collaboratively train machine learning models using decentralized data sources.
The lack of model privacy protection in FL becomes an unneglectable challenge.
We propose a novel FL training approach that accomplishes information exchange among participants via tunable soft prompts.
arXiv Detail & Related papers (2023-11-12T11:01:10Z) - Client Selection for Generalization in Accelerated Federated Learning: A
Multi-Armed Bandit Approach [20.300740276237523]
Federated learning (FL) is an emerging machine learning (ML) paradigm used to train models across multiple nodes (i.e., clients) holding local data sets.
We develop a novel algorithm to achieve this goal, dubbed Bandit Scheduling for FL (BSFL)
arXiv Detail & Related papers (2023-03-18T09:45:58Z) - Knowledge-Enhanced Semi-Supervised Federated Learning for Aggregating
Heterogeneous Lightweight Clients in IoT [34.128674870180596]
Federated learning (FL) enables multiple clients to train models collaboratively without sharing local data.
We propose pFedKnow, which generates lightweight personalized client models via neural network pruning techniques to reduce communication cost.
Experiment results on both image and text datasets show that the proposed pFedKnow outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2023-03-05T13:19:10Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Achieving Personalized Federated Learning with Sparse Local Models [75.76854544460981]
Federated learning (FL) is vulnerable to heterogeneously distributed data.
To counter this issue, personalized FL (PFL) was proposed to produce dedicated local models for each individual user.
Existing PFL solutions either demonstrate unsatisfactory generalization towards different model architectures or cost enormous extra computation and memory.
We proposeFedSpa, a novel PFL scheme that employs personalized sparse masks to customize sparse local models on the edge.
arXiv Detail & Related papers (2022-01-27T08:43:11Z) - Inference-Time Personalized Federated Learning [17.60724466773559]
Inference-Time PFL (IT-PFL) is where a model trained on a set of clients needs to be later evaluated on novel unlabeled clients at inference time.
We propose a novel approach to this problem IT-PFL-HN, based on a hypernetwork module and an encoder module.
We find that IT-PFL-HN generalizes better than current FL and PFL methods, especially when the novel client has a large domain shift.
arXiv Detail & Related papers (2021-11-16T10:57:20Z) - SemiFL: Communication Efficient Semi-Supervised Federated Learning with
Unlabeled Clients [34.24028216079336]
We propose a new Federated Learning framework referred to as SemiFL.
In SemiFL, clients have completely unlabeled data, while the server has a small amount of labeled data.
We demonstrate various efficient strategies of SemiFL that enhance learning performance.
arXiv Detail & Related papers (2021-06-02T19:22:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.