論文の概要: Quantum computing with trapped ions: a beginner's guide
- arxiv url: http://arxiv.org/abs/2303.16358v2
- Date: Sat, 15 Apr 2023 17:31:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 20:25:11.325073
- Title: Quantum computing with trapped ions: a beginner's guide
- Title(参考訳): 閉じ込められたイオンによる量子コンピューティング:初心者のガイド
- Authors: Francesco Bernardini, Abhijit Chakraborty, and Carlos Ord\'o\~nez
- Abstract要約: この記事では、スケーラブルな量子コンピュータのための最もよく使われるプラットフォームの一つである、トラップイオンを用いた量子コンピューティングの基礎を説明します。
ソリューションの適合性は、DiVincenzo基準に対する性能を示すことで解決される。
- 参考スコア(独自算出の注目度): 0.5352699766206808
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This pedagogical article explains the basics of quantum computing using one
of the most-used platform for scalable quantum computers: trapped ions. The
suitability of the solution is addressed by showing its performance towards
DiVincenzo criteria.
- Abstract(参考訳): この教育的な記事では、スケーラブルな量子コンピュータのための最もよく使われるプラットフォームであるイオンを捕捉する量子コンピューティングの基礎を説明します。
ソリューションの適合性は、DiVincenzo基準に対する性能を示すことで解決される。
関連論文リスト
- Variational Quantum Eigensolver Approach to Prime Factorization on IBM's Noisy Intermediate Scale Quantum Computer [0.07499722271664146]
提案アルゴリズムは変分量子固有解法 (VQE) に基づいており, 古典的手法を用いて与えられたハミルトニアン基底状態を求める。
本研究は,IBMの実量子コンピュータと古典シミュレータの両方において,提案手法の性能を評価する数値実験である。
論文 参考訳(メタデータ) (2024-10-02T18:33:36Z) - Simulating optically-active spin defects with a quantum computer [3.3011710036065325]
我々は、光学活性な欠陥状態とその放射放出率をシミュレートするフォールトトレラント量子アルゴリズムを開発した。
量子センサの能力を高めるために、量子コンピュータの可能性について、先見的な視点を提供する。
論文 参考訳(メタデータ) (2024-05-21T18:00:02Z) - Towards Energetic Quantum Advantage in Trapped-Ion Quantum Computation [0.0]
そこで本研究では,量子フーリエ変換(QFT)アルゴリズムのイオントラップによる実装について検討した。
主な焦点は、量子計算のエネルギー的コストを理論的に評価することであった。
エネルギー的コストの潜在的なスケーリングが議論され、最先端の古典的スーパーコンピュータに対するエネルギー的量子優位性のしきい値を見つけるために使われた。
論文 参考訳(メタデータ) (2024-04-17T17:14:53Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - An Introduction to Quantum Computing for Statisticians [2.3757641219977392]
量子コンピューティングは、私たちの生き方や世界を理解する方法に革命をもたらす可能性がある。
このレビューは、統計学とデータ分析の応用に焦点を当てた、量子コンピューティングへのアクセシビリティな導入を提供することを目的としている。
論文 参考訳(メタデータ) (2021-12-13T12:08:28Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
本稿では,E-scale ACCelerator(XACC)フレームワークにおける量子回路シミュレーションバックエンドとして機能する量子仮想マシン(TNQVM)の近代化版を提案する。
新バージョンは汎用的でスケーラブルなネットワーク処理ライブラリであるExaTNをベースにしており、複数の量子回路シミュレータを提供している。
ポータブルなXACC量子プロセッサとスケーラブルなExaTNバックエンドを組み合わせることで、ラップトップから将来のエクサスケールプラットフォームにスケール可能なエンドツーエンドの仮想開発環境を導入します。
論文 参考訳(メタデータ) (2021-04-21T13:26:42Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Post-Hartree-Fock method in Quantum Chemistry for Quantum Computer [0.0]
量子計算化学は量子コンピュータの潜在的な応用である。
量子アルゴリズム, 量子位相推定, 変分量子固有解法をポストハートリーフォック法に適用した。
論文 参考訳(メタデータ) (2020-11-03T07:46:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。