論文の概要: AnyFlow: Arbitrary Scale Optical Flow with Implicit Neural
Representation
- arxiv url: http://arxiv.org/abs/2303.16493v1
- Date: Wed, 29 Mar 2023 07:03:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 15:46:45.126077
- Title: AnyFlow: Arbitrary Scale Optical Flow with Implicit Neural
Representation
- Title(参考訳): AnyFlow: 意図しない神経表現を伴う任意スケール光流
- Authors: Hyunyoung Jung, Zhuo Hui, Lei Luo, Haitao Yang, Feng Liu, Sungjoo Yoo,
Rakesh Ranjan, Denis Demandolx
- Abstract要約: 我々は,様々な解像度の画像から正確な流れを推定するロバストなネットワークであるAnyFlowを紹介した。
我々は,KITTIデータセット上でのクロスデータセット一般化の最先端性能を確立する。
- 参考スコア(独自算出の注目度): 17.501820140334328
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: To apply optical flow in practice, it is often necessary to resize the input
to smaller dimensions in order to reduce computational costs. However,
downsizing inputs makes the estimation more challenging because objects and
motion ranges become smaller. Even though recent approaches have demonstrated
high-quality flow estimation, they tend to fail to accurately model small
objects and precise boundaries when the input resolution is lowered,
restricting their applicability to high-resolution inputs. In this paper, we
introduce AnyFlow, a robust network that estimates accurate flow from images of
various resolutions. By representing optical flow as a continuous
coordinate-based representation, AnyFlow generates outputs at arbitrary scales
from low-resolution inputs, demonstrating superior performance over prior works
in capturing tiny objects with detail preservation on a wide range of scenes.
We establish a new state-of-the-art performance of cross-dataset generalization
on the KITTI dataset, while achieving comparable accuracy on the online
benchmarks to other SOTA methods.
- Abstract(参考訳): 実際、光学フローを適用するには、計算コストを削減するために入力をより小さな次元にサイズ変更する必要がある。
しかし、物体と運動範囲が小さくなるため、入力の縮小により推定がより困難になる。
最近のアプローチでは、高品質なフロー推定が実証されているが、入力解像度を下げる際に小さなオブジェクトと正確な境界を正確にモデル化することができず、高解像度の入力に適用可能である。
本稿では,様々な解像度の画像から正確な流れを推定するロバストネットワークであるAnyFlowを紹介する。
光学フローを連続座標ベース表現として表現することにより、AnyFlowは低解像度入力から任意のスケールで出力を生成し、幅広いシーンで細部を保存した小さなオブジェクトをキャプチャする以前の作業よりも優れた性能を示す。
我々は、KITTIデータセット上でのクロスデータセット一般化の最先端性能を確立し、オンラインベンチマークにおいて他のSOTA手法と同等の精度を達成する。
関連論文リスト
- RMS-FlowNet++: Efficient and Robust Multi-Scale Scene Flow Estimation for Large-Scale Point Clouds [15.138542932078916]
RMS-FlowNet++は、正確で効率的なシーンフロー推定のための、エンドツーエンドの学習ベースの新しいアーキテクチャである。
我々のアーキテクチャは最先端の手法よりも高速な予測を提供し、高いメモリ要求を回避し、同時に250K以上の高密度点雲上の効率的なシーンフローを可能にする。
論文 参考訳(メタデータ) (2024-07-01T09:51:17Z) - FlowIE: Efficient Image Enhancement via Rectified Flow [71.6345505427213]
FlowIEはフローベースのフレームワークであり、基本的な分布から高品質な画像への直線パスを推定する。
私たちのコントリビューションは、合成および実世界のデータセットに関する包括的な実験を通じて、厳密に検証されています。
論文 参考訳(メタデータ) (2024-06-01T17:29:29Z) - OptFlow: Fast Optimization-based Scene Flow Estimation without
Supervision [6.173968909465726]
高速な最適化に基づくシーンフロー推定手法であるOpsFlowを提案する。
人気の高い自動運転ベンチマークにおけるシーンフロー推定のための最先端性能を実現する。
論文 参考訳(メタデータ) (2024-01-04T21:47:56Z) - FuzzyFlow: Leveraging Dataflow To Find and Squash Program Optimization
Bugs [92.47146416628965]
FuzzyFlowはプログラム最適化をテストするために設計されたフォールトローカライゼーションとテストケース抽出フレームワークである。
我々は、データフロープログラム表現を活用して、完全に再現可能なシステム状態と最適化のエリア・オブ・エフェクトをキャプチャする。
テスト時間を削減するため,テスト入力を最小限に抑えるアルゴリズムを設計し,再計算のためのメモリ交換を行う。
論文 参考訳(メタデータ) (2023-06-28T13:00:17Z) - Rethinking Optical Flow from Geometric Matching Consistent Perspective [38.014569953980754]
本稿では,従来の光流量推定法について再考する。
我々は,より優れた特徴表現を持つ光フロー推定(MatchFlow)のための事前学習タスクとして,GIMを使用している。
Sintel クリーンパスと KITTI テストセットの GMA から 11.5% と 10.1% の誤差削減を実現した。
論文 参考訳(メタデータ) (2023-03-15T06:00:38Z) - Taming Contrast Maximization for Learning Sequential, Low-latency,
Event-based Optical Flow [18.335337530059867]
イベントカメラは、複雑なコンピュータビジョン問題に対する低レイテンシで低消費電力のソリューションのための新しい道を開くことで、大きな注目を集めている。
これらのソリューションをアンロックするには、イベントデータのユニークな性質を活用するアルゴリズムを開発する必要がある。
本研究では,イベントベース光フロー推定のための自己教師付き学習パイプラインを提案する。
論文 参考訳(メタデータ) (2023-03-09T12:37:33Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
最近のSOTA(State-of-the-art)光フローモデルでは、従来のアルゴリズムをエミュレートするために有限ステップの更新操作を使用する。
これらのRNNは大きな計算とメモリオーバーヘッドを課し、そのような安定した推定をモデル化するために直接訓練されていない。
暗黙的層の無限レベル固定点として直接流れを解く手法として,Deep equilibrium Flow estimatorを提案する。
論文 参考訳(メタデータ) (2022-04-18T17:53:44Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
光フロー推定学習のためのGMFlowフレームワークを提案する。
機能拡張のためのカスタマイズトランスフォーマー、グローバル機能マッチングのための相関層とソフトマックス層、フロー伝搬のための自己保持層である。
我々の新しいフレームワークは、挑戦的なSintelベンチマークにおいて、32項目RAFTのパフォーマンスより優れています。
論文 参考訳(メタデータ) (2021-11-26T18:59:56Z) - Dense Optical Flow from Event Cameras [55.79329250951028]
本稿では,イベントカメラからの高密度光フロー推定に特徴相関と逐次処理を導入することを提案する。
提案手法は、高密度光流を計算し、MVSEC上での終点誤差を23%削減する。
論文 参考訳(メタデータ) (2021-08-24T07:39:08Z) - Learning Optical Flow from a Few Matches [67.83633948984954]
密な相関体積表現は冗長であり、その中の要素のほんの一部で正確なフロー推定が達成できることを示した。
実験により,高い精度を維持しつつ計算コストとメモリ使用量を大幅に削減できることを示した。
論文 参考訳(メタデータ) (2021-04-05T21:44:00Z) - Unsupervised Motion Representation Enhanced Network for Action
Recognition [4.42249337449125]
連続するフレーム間の動きの表現は、ビデオの理解を大いに促進することが証明されている。
効果的な光フロー解決器であるTV-L1法は、抽出した光フローをキャッシュするために時間と費用がかかる。
UF-TSN(UF-TSN)は、軽量な非監視光フロー推定器を組み込んだ、エンドツーエンドのアクション認識手法です。
論文 参考訳(メタデータ) (2021-03-05T04:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。