論文の概要: Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints
- arxiv url: http://arxiv.org/abs/2303.16510v2
- Date: Thu, 31 Oct 2024 15:23:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 16:58:37.295132
- Title: Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints
- Title(参考訳): 直交制約下での最適化のための不可能な決定論的・確率的・変数還元アルゴリズム
- Authors: Pierre Ablin, Simon Vary, Bin Gao, P. -A. Absil,
- Abstract要約: 本稿では,着陸アルゴリズムの実用化と理論的展開について述べる。
まず、この方法はスティーフェル多様体に拡張される。
また、コスト関数が多くの関数の平均である場合の分散還元アルゴリズムについても検討する。
- 参考スコア(独自算出の注目度): 9.301728976515255
- License:
- Abstract: Orthogonality constraints naturally appear in many machine learning problems, from principal component analysis to robust neural network training. They are usually solved using Riemannian optimization algorithms, which minimize the objective function while enforcing the constraint. However, enforcing the orthogonality constraint can be the most time-consuming operation in such algorithms. Recently, Ablin & Peyr\'e (2022) proposed the landing algorithm, a method with cheap iterations that does not enforce the orthogonality constraints but is attracted towards the manifold in a smooth manner. This article provides new practical and theoretical developments for the landing algorithm. First, the method is extended to the Stiefel manifold, the set of rectangular orthogonal matrices. We also consider stochastic and variance reduction algorithms when the cost function is an average of many functions. We demonstrate that all these methods have the same rate of convergence as their Riemannian counterparts that exactly enforce the constraint, and converge to the manifold. Finally, our experiments demonstrate the promise of our approach to an array of machine-learning problems that involve orthogonality constraints.
- Abstract(参考訳): 直交性の制約は、主成分分析から堅牢なニューラルネットワークトレーニングに至るまで、多くの機械学習問題に自然に現れる。
これらは通常、制約を強制しながら目的関数を最小化するリーマン最適化アルゴリズムを用いて解決される。
しかし、直交制約を強制することはそのようなアルゴリズムにおいて最も時間がかかる操作である。
近年、Ablin & Peyr\'e (2022) は、直交制約を強制せず、滑らかな方法で多様体に惹きつけられる安価な反復法であるランディングアルゴリズムを提案した。
本稿では,着陸アルゴリズムの実用化と理論的展開について述べる。
まず、この方法は直交直交行列の集合であるスティーフェル多様体に拡張される。
また、コスト関数が多くの関数の平均である場合、確率的および分散還元アルゴリズムも検討する。
これらすべての方法が、厳密な制約を強制し、多様体に収束するリーマン的手法と同じ収束率を持つことを示す。
最後に,直交制約を含む機械学習問題に対する我々のアプローチの可能性を実証した。
関連論文リスト
- Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - A Variance-Reduced Stochastic Gradient Tracking Algorithm for
Decentralized Optimization with Orthogonality Constraints [7.028225540638832]
直交制約付き分散最適化のための新しいアルゴリズムを提案する。
VRSGTは、サンプリングと通信の複雑さを同時に低減する直交制約付き分散最適化のための最初のアルゴリズムである。
数値実験では、VRGTSは現実の自律的なサンプルにおいて有望な性能を持つ。
論文 参考訳(メタデータ) (2022-08-29T14:46:44Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
本稿では,スムーズな制約付き最適化のための一階法について紹介する。
提案手法の2つの特徴は、実現可能な集合全体の投影や最適化が避けられることである。
結果として得られるアルゴリズムの手順は、制約が非線形であっても簡単に実装できる。
論文 参考訳(メタデータ) (2021-07-17T11:45:13Z) - Zeroth and First Order Stochastic Frank-Wolfe Algorithms for Constrained
Optimization [13.170519806372075]
2組の制約を持つ凸最適化の問題は、半定値プログラミングの文脈で頻繁に発生する。
最初の制約セットへのプロジェクションは困難であるため、プロジェクションフリーなアルゴリズムを探索する必要がある。
提案アルゴリズムの有効性は, スパース行列推定, 半定緩和によるクラスタリング, および一様スペースカット問題の適用性について検証した。
論文 参考訳(メタデータ) (2021-07-14T08:01:30Z) - A Feasible Level Proximal Point Method for Nonconvex Sparse Constrained
Optimization [25.73397307080647]
本稿では,汎用凸あるいは非汎用機械目標の新しいモデルを提案する。
本稿では,各サブプロブレムの点レベルを徐々に緩和した制約を解くアルゴリズムを提案する。
我々は,新しい数値スケール問題の有効性を実証する。
論文 参考訳(メタデータ) (2020-10-23T05:24:05Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
構造凸最適化問題に対する条件勾配に基づく2つの新しい解法を提案する。
私たちのフレームワークの最も重要な特徴は、各イテレーションで制約のサブセットだけが処理されることです。
提案アルゴリズムは, 条件勾配のステップとともに, 分散の低減と平滑化に頼り, 厳密な収束保証を伴っている。
論文 参考訳(メタデータ) (2020-07-07T21:26:35Z) - Provably Convergent Working Set Algorithm for Non-Convex Regularized
Regression [0.0]
本稿では、収束保証付き非正則正規化器のためのワーキングセットアルゴリズムを提案する。
その結果,ブロックコーディネートや勾配ソルバの完全解法と比較して高い利得を示した。
論文 参考訳(メタデータ) (2020-06-24T07:40:31Z) - Lagrangian Decomposition for Neural Network Verification [148.0448557991349]
ニューラルネットワーク検証の基本的なコンポーネントは、出力が取ることのできる値のバウンダリの計算である。
ラグランジアン分解に基づく新しい手法を提案する。
ランニングタイムのごく一部で、既成の解法に匹敵するバウンダリが得られることを示す。
論文 参考訳(メタデータ) (2020-02-24T17:55:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。