論文の概要: FEND: A Future Enhanced Distribution-Aware Contrastive Learning
Framework for Long-tail Trajectory Prediction
- arxiv url: http://arxiv.org/abs/2303.16574v1
- Date: Wed, 29 Mar 2023 10:16:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 15:19:06.902475
- Title: FEND: A Future Enhanced Distribution-Aware Contrastive Learning
Framework for Long-tail Trajectory Prediction
- Title(参考訳): FEND: 長期軌道予測のための分散型コントラスト学習フレームワーク
- Authors: Yuning Wang, Pu Zhang, Lei Bai, Jianru Xue
- Abstract要約: 本稿では,軌道予測における長い尾現象の扱いに焦点をあてる。
我々は、末尾軌道パターンを認識し、個別のパターンクラスタで特徴空間を形成するための、将来的な強化されたコントラスト学習フレームワークを提唱した。
本手法は, ADEでは9.5%, FDEでは8.5%の精度で, 最先端のロングテール予測法よりも優れていた。
- 参考スコア(独自算出の注目度): 19.626383744807068
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predicting the future trajectories of the traffic agents is a gordian
technique in autonomous driving. However, trajectory prediction suffers from
data imbalance in the prevalent datasets, and the tailed data is often more
complicated and safety-critical. In this paper, we focus on dealing with the
long-tail phenomenon in trajectory prediction. Previous methods dealing with
long-tail data did not take into account the variety of motion patterns in the
tailed data. In this paper, we put forward a future enhanced contrastive
learning framework to recognize tail trajectory patterns and form a feature
space with separate pattern clusters. Furthermore, a distribution aware hyper
predictor is brought up to better utilize the shaped feature space. Our method
is a model-agnostic framework and can be plugged into many well-known
baselines. Experimental results show that our framework outperforms the
state-of-the-art long-tail prediction method on tailed samples by 9.5% on ADE
and 8.5% on FDE, while maintaining or slightly improving the averaged
performance. Our method also surpasses many long-tail techniques on trajectory
prediction task.
- Abstract(参考訳): 交通機関の将来の軌跡を予測することは、自動運転におけるゴーディアン技術である。
しかし、軌道予測は一般的なデータセットでのデータ不均衡に苦しめられ、尾付きデータはより複雑で安全性にクリティカルであることが多い。
本稿では,軌道予測における長い尾現象の扱いに焦点をあてる。
従来の長尾データ処理手法では,尾尾データの動作パターンの多様性は考慮されなかった。
本稿では,末尾の軌跡パターンを認識し,個別のパターンクラスタで特徴空間を形成するための拡張型コントラスト学習フレームワークを提案する。
さらに、分布認識ハイパー予測器を作成し、形状特徴空間をより有効活用する。
我々の手法はモデルに依存しないフレームワークであり、よく知られたベースラインにプラグインすることができる。
実験結果から,本フレームワークの精度はADEで9.5%,FDEで8.5%向上し,平均性能はわずかに向上した。
また,提案手法は軌道予測タスクにおいて,多くのロングテール技術を超えている。
関連論文リスト
- Data-driven Probabilistic Trajectory Learning with High Temporal Resolution in Terminal Airspace [9.688760969026305]
混合モデルとSeq2seqに基づくニューラルネットワークの予測および特徴抽出機能を活用するデータ駆動学習フレームワークを提案する。
このフレームワークでトレーニングした後、学習したモデルは長期予測精度を大幅に向上させることができる。
提案手法の精度と有効性は,予測された軌道と基礎的真実とを比較して評価する。
論文 参考訳(メタデータ) (2024-09-25T21:08:25Z) - Adapting to Length Shift: FlexiLength Network for Trajectory Prediction [53.637837706712794]
軌道予測は、自律運転、ロボット工学、シーン理解など、様々な応用において重要な役割を果たしている。
既存のアプローチは主に、一般に標準入力時間を用いて、公開データセットの予測精度を高めるために、コンパクトなニューラルネットワークの開発に重点を置いている。
本稿では,様々な観測期間に対する既存の軌道予測の堅牢性を高めるための,汎用的で効果的なフレームワークFlexiLength Network(FLN)を紹介する。
論文 参考訳(メタデータ) (2024-03-31T17:18:57Z) - Certified Human Trajectory Prediction [66.1736456453465]
交通予知は自動運転車に不可欠な役割を担っている。
本稿では,軌道予測作業に適した認証手法を提案する。
非有界出力や変異モダリティを含む、軌道予測に関連する固有の課題に対処する。
論文 参考訳(メタデータ) (2024-03-20T17:41:35Z) - AMEND: A Mixture of Experts Framework for Long-tailed Trajectory Prediction [6.724750970258851]
軌道予測のためのモジュラーモデル非依存フレームワークを提案する。
各専門家は、データの特定の部分に関して、特別なスキルで訓練される。
予測のために,相対的信頼スコアを生成することで,最高の専門家を選択するルータネットワークを利用する。
論文 参考訳(メタデータ) (2024-02-13T02:43:41Z) - Orthogonal Uncertainty Representation of Data Manifold for Robust
Long-Tailed Learning [52.021899899683675]
長い尾の分布を持つシナリオでは、尾のサンプルが不足しているため、モデルが尾のクラスを識別する能力は制限される。
モデルロバストネスの長期的現象を改善するために,特徴埋め込みの直交不確実性表現(OUR)とエンドツーエンドのトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-10-16T05:50:34Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
軌道予測におけるデータ不足の問題を緩和するパイプラインレベルのソリューションを提案する。
我々は、駆動データを生成するためにHDマップ拡張とトラジェクトリ合成を採用し、それらを事前学習することで表現を学習する。
我々は、データ拡張と事前学習戦略の有効性を実証するための広範な実験を行う。
論文 参考訳(メタデータ) (2023-09-18T19:49:22Z) - EquiDiff: A Conditional Equivariant Diffusion Model For Trajectory
Prediction [11.960234424309265]
本研究では,将来の車両軌道予測のための深部生成モデルであるEquiDiffを提案する。
EquiDiffは、過去の情報とランダムなガウスノイズを組み込んで将来の軌跡を生成する条件拡散モデルに基づいている。
以上の結果から,EquiDiffは短期予測では他のベースラインモデルよりも優れているが,長期予測では誤差が若干高いことがわかった。
論文 参考訳(メタデータ) (2023-08-12T13:17:09Z) - SGCN:Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction [64.16212996247943]
歩行者軌道予測のためのスパースグラフ畳み込みネットワーク(SGCN)を提案する。
具体的には、SGCNはスパース指向の相互作用をスパース指向の空間グラフと明確にモデル化し、適応的な相互作用歩行者を捉える。
可視化は,歩行者の適応的相互作用とその運動特性を捉えることができることを示す。
論文 参考訳(メタデータ) (2021-04-04T03:17:42Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
車両軌道予測タスクは、一般的に知識駆動とデータ駆動の2つの視点から取り組まれている。
本稿では,これら2つの視点を効果的に結合する「現実的残留ブロック」 (RRB) の学習を提案する。
提案手法は,残留範囲を限定し,その不確実性を考慮した現実的な予測を行う。
論文 参考訳(メタデータ) (2021-03-08T16:03:09Z) - Learning Accurate Long-term Dynamics for Model-based Reinforcement
Learning [7.194382512848327]
より長い地平線で安定的に予測するために, 状態作用データに対する教師付き学習のための新しいパラメータ化を提案する。
シミュレーションおよび実験によるロボット作業の結果,軌道に基づくモデルにより,より正確な長期予測が得られた。
論文 参考訳(メタデータ) (2020-12-16T18:47:37Z) - Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile [15.875569404476495]
本稿では,テンソルに基づく予測に焦点をあて,予測を改善するためのいくつかの実践的手法を提案する。
具体的には、長期予測のために「テンソル分解+2次元自己回帰移動平均(2D-ARMA)」モデルを提案する。
短期予測のために,テンソルクラスタリングに基づくテンソル補完を行い,過度に単純化され精度が保証されるのを避けることを提案する。
論文 参考訳(メタデータ) (2020-04-23T08:30:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。