論文の概要: Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile
- arxiv url: http://arxiv.org/abs/2004.11022v1
- Date: Thu, 23 Apr 2020 08:30:00 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-10 12:45:25.753083
- Title: Long-Short Term Spatiotemporal Tensor Prediction for Passenger Flow
Profile
- Title(参考訳): 乗客フロープロファイルの長期時空間テンソル予測
- Authors: Ziyue Li, Hao Yan, Chen Zhang, Fugee Tsung
- Abstract要約: 本稿では,テンソルに基づく予測に焦点をあて,予測を改善するためのいくつかの実践的手法を提案する。
具体的には、長期予測のために「テンソル分解+2次元自己回帰移動平均(2D-ARMA)」モデルを提案する。
短期予測のために,テンソルクラスタリングに基づくテンソル補完を行い,過度に単純化され精度が保証されるのを避けることを提案する。
- 参考スコア(独自算出の注目度): 15.875569404476495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatiotemporal data is very common in many applications, such as
manufacturing systems and transportation systems. It is typically difficult to
be accurately predicted given intrinsic complex spatial and temporal
correlations. Most of the existing methods based on various statistical models
and regularization terms, fail to preserve innate features in data alongside
their complex correlations. In this paper, we focus on a tensor-based
prediction and propose several practical techniques to improve prediction. For
long-term prediction specifically, we propose the "Tensor Decomposition +
2-Dimensional Auto-Regressive Moving Average (2D-ARMA)" model, and an effective
way to update prediction real-time; For short-term prediction, we propose to
conduct tensor completion based on tensor clustering to avoid oversimplifying
and ensure accuracy. A case study based on the metro passenger flow data is
conducted to demonstrate the improved performance.
- Abstract(参考訳): 時空間データは、製造システムや輸送システムなど、多くのアプリケーションで非常に一般的である。
通常、固有の複雑な空間的および時間的相関から正確に予測することは困難である。
既存の手法の多くは、様々な統計モデルと正規化項に基づいており、複雑な相関関係とともにデータに固有の特徴を保存できない。
本稿では,テンソルに基づく予測に着目し,予測を改善するための実用的手法を提案する。
具体的には、長期予測のために「テンソル分解+2次元自己回帰移動平均(2D-ARMA)」モデルと、予測をリアルタイムに更新する効果的な方法を提案する。
地下鉄の乗客フローデータに基づくケーススタディを行い,性能改善を実証した。
関連論文リスト
- Critical Example Mining for Vehicle Trajectory Prediction using Flow-based Generative Models [10.40439055916036]
本稿では,トラジェクトリの希少性を推定するデータ駆動手法を提案する。
観測の希少度を全軌跡と組み合わせることで,予測が比較的難しいデータのサブセットを効果的に同定する。
論文 参考訳(メタデータ) (2024-10-21T15:02:30Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2023-10-17T20:30:16Z) - Probabilistic forecasting for geosteering in fluvial successions using a
generative adversarial network [0.0]
リアルタイムデータに基づく高速更新は、プレドリルモデルで高い不確実性を持つ複雑な貯水池での掘削に不可欠である。
本稿では, フラビアル継承の地質学的に一貫した2次元断面を再現するためのGAN(generative adversarial Deep Neural Network)を提案する。
この手法は不確実性を低減し, 掘削ビットより500m先にある主要な地質特性を正確に予測する。
論文 参考訳(メタデータ) (2022-07-04T12:52:38Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
確率的階層的時系列予測は時系列予測の重要な変種である。
ほとんどの手法は点予測に焦点を絞っており、確率的確率分布を十分に調整していない。
ProFHiTは,階層全体の予測分布を共同でモデル化する完全確率的階層予測モデルである。
論文 参考訳(メタデータ) (2022-06-16T06:13:53Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Temporally-Continuous Probabilistic Prediction using Polynomial
Trajectory Parameterization [12.896275507449936]
アクターの動作予測に一般的に使用される表現は、各アクターが個別の将来の時間ポイントで行う一連のウェイポイントである。
このアプローチは単純で柔軟であるが、中間時間ステップで非現実的な高次微分や近似誤差を示すことができる。
本稿では,軌道パラメータ化に基づく時間的連続軌道予測のための簡易かつ汎用的な表現を提案する。
論文 参考訳(メタデータ) (2020-11-01T01:51:44Z) - AutoCP: Automated Pipelines for Accurate Prediction Intervals [84.16181066107984]
本稿では、自動予測のための自動機械学習(Automatic Machine Learning for Conformal Prediction, AutoCP)というAutoMLフレームワークを提案する。
最高の予測モデルを選択しようとする慣れ親しんだAutoMLフレームワークとは異なり、AutoCPは、ユーザが指定したターゲットカバレッジ率を達成する予測間隔を構築する。
さまざまなデータセットでAutoCPをテストしたところ、ベンチマークアルゴリズムを著しく上回っていることがわかった。
論文 参考訳(メタデータ) (2020-06-24T23:13:11Z) - Long-Term Prediction of Lane Change Maneuver Through a Multilayer
Perceptron [5.267336573374459]
横方向情報や角度情報のない長期(510秒)レーン変更予測モデルを提案する。
ロジスティック回帰モデル、多層パーセプトロン(MLP)モデル、リカレントニューラルネットワーク(RNN)モデルを含む3つの予測モデルが導入されている。
評価結果から, 開発した予測モデルでは, 実車線変更操作の75%を平均8.05秒で捉えることができることがわかった。
論文 参考訳(メタデータ) (2020-06-23T05:32:40Z) - GraphTCN: Spatio-Temporal Interaction Modeling for Human Trajectory
Prediction [5.346782918364054]
我々は,より効率的かつ正確な軌道予測を支援するために,新しいCNNベースの時空間グラフフレームワークGraphCNTを提案する。
従来のモデルとは対照的に,我々のモデルにおける空間的・時間的モデリングは各局所時間ウィンドウ内で計算される。
本モデルは,様々な軌道予測ベンチマークデータセットの最先端モデルと比較して,効率と精度の両面で優れた性能を実現する。
論文 参考訳(メタデータ) (2020-03-16T12:56:12Z) - Ambiguity in Sequential Data: Predicting Uncertain Futures with
Recurrent Models [110.82452096672182]
逐次データによる曖昧な予測を扱うために,Multiple hypothesis Prediction(MHP)モデルの拡張を提案する。
また、不確実性を考慮するのに適した曖昧な問題に対する新しい尺度も導入する。
論文 参考訳(メタデータ) (2020-03-10T09:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。