論文の概要: Quantum Deep Hedging
- arxiv url: http://arxiv.org/abs/2303.16585v1
- Date: Wed, 29 Mar 2023 10:42:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 15:08:30.215227
- Title: Quantum Deep Hedging
- Title(参考訳): 量子ディープヘッジ
- Authors: El Amine Cherrat, Snehal Raj, Iordanis Kerenidis, Abhishek Shekhar,
Ben Wood, Jon Dee, Shouvanik Chakrabarti, Richard Chen, Dylan Herman, Shaohan
Hu, Pierre Minssen, Ruslan Shaydulin, Yue Sun, Romina Yalovetzky, Marco
Pistoia
- Abstract要約: 我々は、深層強化学習が現実世界に強力な枠組みを提供するヘッジの問題を考察する。
我々はポリシー探索と分布型アクター批判アルゴリズムに基づく量子強化学習法を開発した。
トラップイオン量子プロセッサ上で提案したモデルの実装に成功した。
- 参考スコア(独自算出の注目度): 20.7131164989297
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum machine learning has the potential for a transformative impact across
industry sectors and in particular in finance. In our work we look at the
problem of hedging where deep reinforcement learning offers a powerful
framework for real markets. We develop quantum reinforcement learning methods
based on policy-search and distributional actor-critic algorithms that use
quantum neural network architectures with orthogonal and compound layers for
the policy and value functions. We prove that the quantum neural networks we
use are trainable, and we perform extensive simulations that show that quantum
models can reduce the number of trainable parameters while achieving comparable
performance and that the distributional approach obtains better performance
than other standard approaches, both classical and quantum. We successfully
implement the proposed models on a trapped-ion quantum processor, utilizing
circuits with up to $16$ qubits, and observe performance that agrees well with
noiseless simulation. Our quantum techniques are general and can be applied to
other reinforcement learning problems beyond hedging.
- Abstract(参考訳): 量子機械学習は、業界、特に金融分野での変革的な影響の可能性を秘めている。
私たちの仕事では、深層強化学習が実際の市場に対して強力なフレームワークを提供するため、ヘッジの問題に目を向けています。
本研究では,ポリシと値関数に直交層と複合層を持つ量子ニューラルネットワークアーキテクチャを用いた,ポリシー探索および分布型アクタクリティカルアルゴリズムに基づく量子強化学習法を開発した。
我々は、我々が使用する量子ニューラルネットワークが学習可能であることを証明し、量子モデルが学習可能なパラメータの数を減少させながら同等の性能を達成し、分布アプローチが古典的および量子的手法よりも優れた性能が得られることを示す広範なシミュレーションを行う。
トラップイオン量子プロセッサ上で提案したモデルの実装に成功し、最大16ドルキュービットの回路を活用し、ノイズレスシミュレーションによく適合する性能を観測した。
我々の量子技術は一般的なものであり、ヘッジ以外の強化学習問題にも適用できる。
関連論文リスト
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
論文 参考訳(メタデータ) (2024-11-13T12:03:39Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
我々は,コ・テンク (co-TenQu) と呼ばれる古典量子アーキテクチャを導入する。
Co-TenQuは古典的なディープニューラルネットワークを41.72%まで向上させる。
他の量子ベースの手法よりも1.9倍も優れており、70.59%少ない量子ビットを使用しながら、同様の精度を達成している。
論文 参考訳(メタデータ) (2024-02-23T14:09:41Z) - Quantum Advantage Actor-Critic for Reinforcement Learning [5.579028648465784]
本稿では,Advantage Actor-Criticアルゴリズムと変分量子回路を組み合わせた新しい量子強化学習手法を提案する。
複数の量子アドバンテージ・アクター・クリティカル構成をよく知られたカートポール環境で実証的にテストし、連続的な状態空間を持つ制御タスクにおける我々のアプローチを評価する。
論文 参考訳(メタデータ) (2024-01-13T11:08:45Z) - Quantum Generative Adversarial Networks: Bridging Classical and Quantum
Realms [0.6827423171182153]
GAN(Generative Adversarial Networks)領域における古典的および量子コンピューティングパラダイムの相乗的融合について検討する。
我々の目的は、量子計算要素を従来のGANアーキテクチャにシームレスに統合し、トレーニングプロセスの強化のために新しい経路を開放することである。
この研究は量子化機械学習の最前線に位置し、量子システムの計算能力を活用するための重要な一歩である。
論文 参考訳(メタデータ) (2023-12-15T16:51:36Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
各量子状態に対するゲートの作用を特徴付ける新しい量子ゲート距離を提案する。
提案手法は、経験的量子機械学習の3つの問題において、ベンチマークを著しく上回っている。
論文 参考訳(メタデータ) (2022-06-28T16:23:24Z) - Variational Quantum Soft Actor-Critic [1.90365714903665]
本研究では,連続制御の最先端手法の一つであるソフトアクター批判に基づく量子強化学習アルゴリズムを開発した。
この量子版のソフトアクター・クリティックは、調整可能なパラメータをはるかに少なくして、オリジナルのソフトアクター・クリティックに匹敵することを示す。
論文 参考訳(メタデータ) (2021-12-20T06:31:06Z) - Variational quantum policies for reinforcement learning [0.0]
変分量子回路は近年、量子機械学習モデルとして人気を集めている。
本研究では,変動量子回路に基づく強化学習ポリシの構築と訓練について検討する。
論文 参考訳(メタデータ) (2021-03-09T17:33:09Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Experimental Quantum Generative Adversarial Networks for Image
Generation [93.06926114985761]
超伝導量子プロセッサを用いた実世界の手書き桁画像の学習と生成を実験的に行う。
我々の研究は、短期量子デバイス上での高度な量子生成モデル開発のためのガイダンスを提供する。
論文 参考訳(メタデータ) (2020-10-13T06:57:17Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
本稿では、学習ツールと量子絡み合いの理論を組み合わせて、純状態における多部量子ビット系の絡み合い分類を行う。
我々は、ニューラルネットワーク量子状態(NNS)として知られる制限されたボルツマンマシン(RBM)アーキテクチャにおいて、人工ニューラルネットワークを用いた量子システムのパラメータ化を用いる。
論文 参考訳(メタデータ) (2019-12-31T07:40:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。