論文の概要: Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits
- arxiv url: http://arxiv.org/abs/2411.08552v1
- Date: Wed, 13 Nov 2024 12:03:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-14 16:12:00.587010
- Title: Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits
- Title(参考訳): 可変量子回路を用いた機械学習のための事前学習ニューラルネットワークの活用
- Authors: Jun Qi, Chao-Han Yang, Samuel Yen-Chi Chen, Pin-Yu Chen, Hector Zenil, Jesper Tegner,
- Abstract要約: 我々は、事前学習されたニューラルネットワークを用いて変分量子回路(VQC)を強化する革新的なアプローチを導入する。
この手法は近似誤差をキュービット数から効果的に分離し、制約条件の必要性を除去する。
我々の結果はヒトゲノム解析などの応用にまで拡張され、我々のアプローチの幅広い適用性を示している。
- 参考スコア(独自算出の注目度): 48.33631905972908
- License:
- Abstract: Quantum Machine Learning (QML) offers tremendous potential but is currently limited by the availability of qubits. We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC). This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions, making QML more viable for real-world applications. Our method significantly improves parameter optimization for VQC while delivering notable gains in representation and generalization capabilities, as evidenced by rigorous theoretical analysis and extensive empirical testing on quantum dot classification tasks. Moreover, our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach. By addressing the constraints of current quantum hardware, our work paves the way for a new era of advanced QML applications, unlocking the full potential of quantum computing in fields such as machine learning, materials science, medicine, mimetics, and various interdisciplinary areas.
- Abstract(参考訳): 量子機械学習(QML)は大きな可能性を秘めているが、現在キュービットの可用性によって制限されている。
本稿では、事前学習されたニューラルネットワークを用いて変動量子回路(VQC)を強化する革新的なアプローチを提案する。
この技術は、近似誤差をキュービット数から効果的に分離し、制約条件の必要性を排除し、QMLを現実世界のアプリケーションでより有効にする。
本手法は,量子ドット分類タスクにおける厳密な理論的解析と広範な経験的テストによって証明されたように,VQCのパラメータ最適化を著しく改善するとともに,表現と一般化能力の顕著な向上を実現している。
さらに、ヒトゲノム解析などの応用にまで拡張し、我々のアプローチの幅広い適用性を実証した。
現在の量子ハードウェアの制約に対処することによって、我々の研究は、機械学習、材料科学、医学、ミメティックス、および様々な分野の分野における量子コンピューティングの潜在能力を解放する、先進的なQMLアプリケーションの新しい時代への道を開く。
関連論文リスト
- Learning to Measure Quantum Neural Networks [10.617463958884528]
本稿では,量子系の可観測性,特にエルミート行列学習性を実現する新しい手法を提案する。
本手法では,パラメータ化可観測関数を通常の量子回路パラメータとともに学習するエンド・ツー・エンドの微分可能学習フレームワークを特徴とする。
数値シミュレーションにより,提案手法は変動量子回路の観測値の同定が可能であり,その結果が得られた。
論文 参考訳(メタデータ) (2025-01-10T02:28:19Z) - Quantum Bayesian Networks for Machine Learning in Oil-Spill Detection [3.9554540293311864]
本稿では、量子ベイズネットワーク(QBN)を用いて、不均衡なデータセットを分類する新しいベイズアプローチを提案する。
量子拡張を古典的な機械学習アーキテクチャに統合するという課題を効果的に解決する。
本研究は, 異常の検出・分類において重要な進歩を示し, より効果的かつ正確な環境モニタリング・管理に寄与している。
論文 参考訳(メタデータ) (2024-12-24T15:44:26Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
本稿では,量子コンピューティングと機械学習アルゴリズムを統合する新しいアプローチであるQuantum-Train(QT)フレームワークを紹介する。
QTは、古典的なマッピングモデルと並んで量子ニューラルネットワークを利用することで、顕著な結果を得る。
論文 参考訳(メタデータ) (2024-05-18T14:35:57Z) - Machine Learning for Practical Quantum Error Mitigation [0.0]
量子エラー軽減のための機械学習は、そのコストを大幅に削減することを示す。
本稿では,ML-QEMを用いて従来の緩和手法を模倣し,より優れた実行効率で拡張性を実現する方法を提案する。
論文 参考訳(メタデータ) (2023-09-29T16:17:12Z) - Pre-training Tensor-Train Networks Facilitates Machine Learning with Variational Quantum Circuits [70.97518416003358]
変分量子回路(VQC)は、ノイズの多い中間スケール量子(NISQ)デバイス上での量子機械学習を約束する。
テンソルトレインネットワーク(TTN)はVQC表現と一般化を向上させることができるが、結果として得られるハイブリッドモデルであるTTN-VQCは、Polyak-Lojasiewicz(PL)条件による最適化の課題に直面している。
この課題を軽減するために,プレトレーニングTTNモデルとVQCを組み合わせたPre+TTN-VQCを導入する。
論文 参考訳(メタデータ) (2023-05-18T03:08:18Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
本稿では,QRCとQELMをモデル化するフレームワークを提案する。
我々の分析は、QELMとQRCの両方の機能と限界をより深く理解するための道を開いた。
論文 参考訳(メタデータ) (2022-10-03T09:32:28Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
テンソルネットワーク(TN)アルゴリズムは、パラメタライズド量子回路(PQC)にマッピングできる
本稿では,現実的な量子回路を用いてTN状態を近似する新しいプロトコルを提案する。
その結果、量子回路の逐次的な成長と最適化を含む1つの特定のプロトコルが、他の全ての手法より優れていることが明らかとなった。
論文 参考訳(メタデータ) (2022-09-01T17:08:41Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。