An inexact LPA for DC composite optimization and application to matrix completions with outliers
- URL: http://arxiv.org/abs/2303.16822v4
- Date: Fri, 7 Jun 2024 10:12:12 GMT
- Title: An inexact LPA for DC composite optimization and application to matrix completions with outliers
- Authors: Ting Tao, Ruyu Liu, Shaohua Pan,
- Abstract summary: This paper concerns a class of composite optimization problems.
By leveraging the composite structure, we provide a condition for the potential function to have the KL property of $1/2$ at the iterate sequence.
- Score: 5.746154410100363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper concerns a class of DC composite optimization problems which, as an extension of convex composite optimization problems and DC programs with nonsmooth components, often arises in robust factorization models of low-rank matrix recovery. For this class of nonconvex and nonsmooth problems, we propose an inexact linearized proximal algorithm (iLPA) by computing in each step an inexact minimizer of a strongly convex majorization constructed with a partial linearization of their objective functions at the current iterate, and establish the convergence of the generated iterate sequence under the Kurdyka-\L\"ojasiewicz (KL) property of a potential function. In particular, by leveraging the composite structure, we provide a verifiable condition for the potential function to have the KL property of exponent $1/2$ at the limit point, so for the iterate sequence to have a local R-linear convergence rate. Finally, we apply the proposed iLPA to a robust factorization model for matrix completions with outliers and non-uniform sampling, and numerical comparison with a proximal alternating minimization (PAM) method confirms iLPA yields the comparable relative errors or NMAEs within less running time, especially for large-scale real data.
Related papers
- A Sample Efficient Alternating Minimization-based Algorithm For Robust Phase Retrieval [56.67706781191521]
In this work, we present a robust phase retrieval problem where the task is to recover an unknown signal.
Our proposed oracle avoids the need for computationally spectral descent, using a simple gradient step and outliers.
arXiv Detail & Related papers (2024-09-07T06:37:23Z) - A majorized PAM method with subspace correction for low-rank composite factorization model [0.44241702149260353]
This paper concerns a class of low-rank composite factorization models arising from matrix completion.
We propose a proximal minimization alternating algorithm (AMA) with subspace correction, in which a subspace correction step is imposed on every proximal subproblem.
arXiv Detail & Related papers (2024-06-07T02:33:22Z) - Regularized Projection Matrix Approximation with Applications to Community Detection [1.3761665705201904]
This paper introduces a regularized projection matrix approximation framework designed to recover cluster information from the affinity matrix.
We investigate three distinct penalty functions, each specifically tailored to address bounded, positive, and sparse scenarios.
Numerical experiments conducted on both synthetic and real-world datasets reveal that our regularized projection matrix approximation approach significantly outperforms state-of-the-art methods in clustering performance.
arXiv Detail & Related papers (2024-05-26T15:18:22Z) - Variable Substitution and Bilinear Programming for Aligning Partially Overlapping Point Sets [48.1015832267945]
This research presents a method to meet requirements through the minimization objective function of the RPM algorithm.
A branch-and-bound (BnB) algorithm is devised, which solely branches over the parameters, thereby boosting convergence rate.
Empirical evaluations demonstrate better robustness of the proposed methodology against non-rigid deformation, positional noise, and outliers, when compared with prevailing state-of-the-art transformations.
arXiv Detail & Related papers (2024-05-14T13:28:57Z) - Low-Rank Extragradient Methods for Scalable Semidefinite Optimization [0.0]
We focus on high-dimensional and plausible settings in which the problem admits a low-rank solution.
We provide several theoretical results proving that, under these circumstances, the well-known Extragradient method converges to a solution of the constrained optimization problem.
arXiv Detail & Related papers (2024-02-14T10:48:00Z) - ALEXR: An Optimal Single-Loop Algorithm for Convex Finite-Sum Coupled Compositional Stochastic Optimization [53.14532968909759]
We introduce an efficient single-loop primal-dual block-coordinate algorithm, dubbed ALEXR.
We establish the convergence rates of ALEXR in both convex and strongly convex cases under smoothness and non-smoothness conditions.
We present lower complexity bounds to demonstrate that the convergence rates of ALEXR are optimal among first-order block-coordinate algorithms for the considered class of cFCCO problems.
arXiv Detail & Related papers (2023-12-04T19:00:07Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way Partial AUC (OPAUC) and Two-way Partial AUC (TPAUC) measures the average performance of a binary classifier.
Most of the existing methods could only optimize PAUC approximately, leading to inevitable biases that are not controllable.
We present a simpler reformulation of the PAUC problem via distributional robust optimization AUC.
arXiv Detail & Related papers (2022-10-08T08:26:22Z) - Piecewise linear regression and classification [0.20305676256390928]
This paper proposes a method for solving multivariate regression and classification problems using piecewise linear predictors.
A Python implementation of the algorithm described in this paper is available at http://cse.lab.imtlucca.it/bemporad/parc.
arXiv Detail & Related papers (2021-03-10T17:07:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.