A majorized PAM method with subspace correction for low-rank composite factorization model
- URL: http://arxiv.org/abs/2406.04588v1
- Date: Fri, 7 Jun 2024 02:33:22 GMT
- Title: A majorized PAM method with subspace correction for low-rank composite factorization model
- Authors: Ting Tao, Yitian Qian, Shaohua Pan,
- Abstract summary: This paper concerns a class of low-rank composite factorization models arising from matrix completion.
We propose a proximal minimization alternating algorithm (AMA) with subspace correction, in which a subspace correction step is imposed on every proximal subproblem.
- Score: 0.44241702149260353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper concerns a class of low-rank composite factorization models arising from matrix completion. For this nonconvex and nonsmooth optimization problem, we propose a proximal alternating minimization algorithm (PAMA) with subspace correction, in which a subspace correction step is imposed on every proximal subproblem so as to guarantee that the corrected proximal subproblem has a closed-form solution. For this subspace correction PAMA, we prove the subsequence convergence of the iterate sequence, and establish the convergence of the whole iterate sequence and the column subspace sequences of factor pairs under the KL property of objective function and a restrictive condition that holds automatically for the column $\ell_{2,0}$-norm function. Numerical comparison with the proximal alternating linearized minimization method on one-bit matrix completion problems indicates that PAMA has an advantage in seeking lower relative error within less time.
Related papers
- Variable Substitution and Bilinear Programming for Aligning Partially Overlapping Point Sets [48.1015832267945]
This research presents a method to meet requirements through the minimization objective function of the RPM algorithm.
A branch-and-bound (BnB) algorithm is devised, which solely branches over the parameters, thereby boosting convergence rate.
Empirical evaluations demonstrate better robustness of the proposed methodology against non-rigid deformation, positional noise, and outliers, when compared with prevailing state-of-the-art transformations.
arXiv Detail & Related papers (2024-05-14T13:28:57Z) - An inexact LPA for DC composite optimization and application to matrix completions with outliers [5.746154410100363]
This paper concerns a class of composite optimization problems.
By leveraging the composite structure, we provide a condition for the potential function to have the KL property of $1/2$ at the iterate sequence.
arXiv Detail & Related papers (2023-03-29T16:15:34Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
We address the non- optimisation problem of finding a matrix on the Stiefel manifold that maximises a quadratic objective function.
We propose a simple yet effective sparsity-promoting algorithm for finding the dominant eigenspace matrix.
arXiv Detail & Related papers (2021-09-30T19:17:35Z) - Nonlinear matrix recovery using optimization on the Grassmann manifold [18.655422834567577]
We investigate the problem of recovering a partially observed high-rank clustering matrix whose columns obey a nonlinear structure such as a union of subspaces.
We show that the alternating limit converges to a unique point using the Kurdyka-Lojasi property.
arXiv Detail & Related papers (2021-09-13T16:13:13Z) - Two-Stage Stochastic Optimization via Primal-Dual Decomposition and Deep
Unrolling [86.85697555068168]
Two-stage algorithmic optimization plays a critical role in various engineering and scientific applications.
There still lack efficient algorithms, especially when the long-term and short-term variables are coupled in the constraints.
We show that PDD-SSCA can achieve superior performance over existing solutions.
arXiv Detail & Related papers (2021-05-05T03:36:00Z) - A Momentum-Assisted Single-Timescale Stochastic Approximation Algorithm
for Bilevel Optimization [112.59170319105971]
We propose a new algorithm -- the Momentum- Single-timescale Approximation (MSTSA) -- for tackling problems.
MSTSA allows us to control the error in iterations due to inaccurate solution to the lower level subproblem.
arXiv Detail & Related papers (2021-02-15T07:10:33Z) - Tangent Space Based Alternating Projections for Nonnegative Low Rank
Matrix Approximation [22.96292865984433]
In the nonnegative low rank matrix approximation method, the projection onto the manifold of fixed rank matrices can be expensive as the singular value decomposition is required.
We propose to use the tangent space of the point in the manifold to approximate the projection onto the manifold in order to reduce the computational cost.
arXiv Detail & Related papers (2020-09-02T05:25:16Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.