論文の概要: Multi-scale Hierarchical Vision Transformer with Cascaded Attention
Decoding for Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2303.16892v1
- Date: Wed, 29 Mar 2023 17:58:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-30 13:36:09.671966
- Title: Multi-scale Hierarchical Vision Transformer with Cascaded Attention
Decoding for Medical Image Segmentation
- Title(参考訳): 医用画像セグメンテーションのためのカスケード注意デコードを有するマルチスケール階層視覚トランス
- Authors: Md Mostafijur Rahman and Radu Marculescu
- Abstract要約: マルチスケール階層型VIsion Transformer (MERIT) バックボーンネットワークを導入し、SAを複数スケールで計算することでモデルの一般化性を向上させる。
注意に基づくデコーダCASCADE(Cascaded Attention Decoding)も組み込んで,MERITが生成するマルチステージ機能をさらに改良する。
- 参考スコア(独自算出の注目度): 8.530680502975095
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Transformers have shown great success in medical image segmentation. However,
transformers may exhibit a limited generalization ability due to the underlying
single-scale self-attention (SA) mechanism. In this paper, we address this
issue by introducing a Multi-scale hiERarchical vIsion Transformer (MERIT)
backbone network, which improves the generalizability of the model by computing
SA at multiple scales. We also incorporate an attention-based decoder, namely
Cascaded Attention Decoding (CASCADE), for further refinement of multi-stage
features generated by MERIT. Finally, we introduce an effective multi-stage
feature mixing loss aggregation (MUTATION) method for better model training via
implicit ensembling. Our experiments on two widely used medical image
segmentation benchmarks (i.e., Synapse Multi-organ, ACDC) demonstrate the
superior performance of MERIT over state-of-the-art methods. Our MERIT
architecture and MUTATION loss aggregation can be used with downstream medical
image and semantic segmentation tasks.
- Abstract(参考訳): トランスフォーマーは医用画像のセグメンテーションで大きな成功を収めている。
しかし、トランスフォーマーは、基礎となるシングルスケールセルフアテンション(sa)機構のため、限定的な一般化能力を示す可能性がある。
本稿では,マルチスケール階層型vIsion Transformer(MERIT)バックボーンネットワークを導入し,SAを複数スケールで計算することでモデルの一般化性を向上させる。
また、MERITが生成するマルチステージ機能のさらなる改善のために、注意に基づくデコーダ、すなわちCascaded Attention Decoding (CASCADE)を組み込んだ。
最後に,暗黙のアンサンブルによるモデル学習に有効なマルチステージ機能混合損失アグリゲーション(MUTATION)法を提案する。
医用画像セグメンテーションベンチマーク(synapse multi-organ, acdc)を2つ実施し, 最先端手法よりも優れた評価性能を示した。
我々のMERITアーキテクチャとMUTATION損失集約は、下流の医療画像とセマンティックセグメンテーションタスクで利用できる。
関連論文リスト
- MOSformer: Momentum encoder-based inter-slice fusion transformer for
medical image segmentation [15.94370954641629]
2.5Dベースのセグメンテーションモデルは、しばしば各スライスを等しく扱い、スライス間の情報を効果的に学習し活用することができない。
この問題を解決するために,新しいMomentumエンコーダを用いたスライス間核融合トランス (MOSformer) を提案する。
MOSformerは3つのベンチマークデータセット(Synapse、ACDC、AMOS)で評価され、それぞれ85.63%、92.19%、85.43%の新たな最先端技術を確立する。
論文 参考訳(メタデータ) (2024-01-22T11:25:59Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
医用画像のセグメンテーションはコンピュータ支援診断において重要な役割を担っている。
半教師型医用画像(DEC-Seg)のための新しいDual-scale Enhanced and Cross-generative consistency learning frameworkを提案する。
論文 参考訳(メタデータ) (2023-12-26T12:56:31Z) - DA-TransUNet: Integrating Spatial and Channel Dual Attention with
Transformer U-Net for Medical Image Segmentation [5.5582646801199225]
本研究では,DA-TransUNetと呼ばれる新しい深層画像分割フレームワークを提案する。
トランスフォーマーとデュアルアテンションブロック(DA-Block)を従来のU字型アーキテクチャに統合することを目的としている。
以前のトランスフォーマーベースのU-netモデルとは異なり、DA-TransUNetはトランスフォーマーとDA-Blockを使用してグローバルな特徴とローカルな特徴だけでなく、画像固有の位置とチャネルの特徴を統合する。
論文 参考訳(メタデータ) (2023-10-19T08:25:03Z) - M$^{2}$SNet: Multi-scale in Multi-scale Subtraction Network for Medical
Image Segmentation [73.10707675345253]
医用画像から多様なセグメンテーションを仕上げるマルチスケールサブトラクションネットワーク(M$2$SNet)を提案する。
本手法は,4つの異なる医用画像セグメンテーションタスクの11つのデータセットに対して,異なる評価基準の下で,ほとんどの最先端手法に対して好意的に機能する。
論文 参考訳(メタデータ) (2023-03-20T06:26:49Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
我々は、MedSegDiff-V2と呼ばれるトランスフォーマーベースの拡散フレームワークを提案する。
画像の異なる20種類の画像分割作業において,その有効性を検証する。
論文 参考訳(メタデータ) (2023-01-19T03:42:36Z) - Class-Aware Generative Adversarial Transformers for Medical Image
Segmentation [39.14169989603906]
医用画像セグメンテーションのための新規な生成逆変換器CA-GANformerを提案する。
まず、ピラミッド構造を利用してマルチスケール表現を構築し、マルチスケールのバリエーションを扱う。
次に、意味構造を持つオブジェクトの識別領域をよりよく学習するために、新しいクラス対応トランスフォーマーモジュールを設計する。
論文 参考訳(メタデータ) (2022-01-26T03:50:02Z) - MISSFormer: An Effective Medical Image Segmentation Transformer [3.441872541209065]
CNNベースの手法は、医用画像のセグメンテーションにおいて顕著な成果を上げている。
トランスフォーマーベースの手法は、近ごろ、長距離依存の容量のため、視覚タスクで人気がある。
MISSFormerは,効果的かつ強力な医用画像tranSFormerである。
論文 参考訳(メタデータ) (2021-09-15T08:56:00Z) - TransAttUnet: Multi-level Attention-guided U-Net with Transformer for
Medical Image Segmentation [33.45471457058221]
本稿では,TransAttUnetと呼ばれるトランスフォーマーベースの医用画像セマンティックセマンティック・セマンティック・フレームワークを提案する。
特に,デコーダブロック間の複数スケールのスキップ接続を確立することで,セマンティック・スケールのアップサンプリング機能を集約する。
我々の手法は一貫して最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2021-07-12T09:17:06Z) - Modality Completion via Gaussian Process Prior Variational Autoencoders
for Multi-Modal Glioma Segmentation [75.58395328700821]
本稿では,患者スキャンに欠落するサブモダリティを1つ以上のインプットするために,MGP-VAE(Multi-modal Gaussian Process Prior Variational Autoencoder)を提案する。
MGP-VAEは、変分オートエンコーダ(VAE)に先立ってガウス過程(GP)を利用して、被験者/患者およびサブモダリティ相関を利用することができる。
4つのサブモダリティのうち2つ、または3つが欠落している脳腫瘍に対するMGP-VAEの適用性を示す。
論文 参考訳(メタデータ) (2021-07-07T19:06:34Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
医用画像分割タスクにおけるトランスフォーマティブネットワークアーキテクチャの利用可能性について検討する。
セルフアテンションモジュールに追加の制御機構を導入することで,既存のアーキテクチャを拡張するGated Axial-Attentionモデルを提案する。
医療画像上で効果的にモデルを訓練するために,さらにパフォーマンスを向上させる局所的グローバルトレーニング戦略 (logo) を提案する。
論文 参考訳(メタデータ) (2021-02-21T18:35:14Z) - TransUNet: Transformers Make Strong Encoders for Medical Image
Segmentation [78.01570371790669]
医用画像のセグメンテーションは医療システムの開発に必須の前提条件である。
様々な医療画像セグメンテーションタスクにおいて、U-Netとして知られるu字型アーキテクチャがデファクトスタンダードとなっている。
医用画像セグメンテーションの強力な代替手段として,トランスフォーマーとU-Netの両方を有効活用するTransUNetを提案する。
論文 参考訳(メタデータ) (2021-02-08T16:10:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。