CADM: Confusion Model-based Detection Method for Real-drift in Chunk
Data Stream
- URL: http://arxiv.org/abs/2303.16906v1
- Date: Sat, 25 Mar 2023 08:59:27 GMT
- Title: CADM: Confusion Model-based Detection Method for Real-drift in Chunk
Data Stream
- Authors: Songqiao Hu and Zeyi Liu and Xiao He
- Abstract summary: Concept drift detection has attracted considerable attention due to its importance in many real-world applications such as health monitoring and fault diagnosis.
We propose a new approach to detect real-drift in the chunk data stream with limited annotations based on concept confusion.
- Score: 3.0885191226198785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Concept drift detection has attracted considerable attention due to its
importance in many real-world applications such as health monitoring and fault
diagnosis. Conventionally, most advanced approaches will be of poor performance
when the evaluation criteria of the environment has changed (i.e. concept
drift), either can only detect and adapt to virtual drift. In this paper, we
propose a new approach to detect real-drift in the chunk data stream with
limited annotations based on concept confusion. When a new data chunk arrives,
we use both real labels and pseudo labels to update the model after prediction
and drift detection. In this context, the model will be confused and yields
prediction difference once drift occurs. We then adopt cosine similarity to
measure the difference. And an adaptive threshold method is proposed to find
the abnormal value. Experiments show that our method has a low false alarm rate
and false negative rate with the utilization of different classifiers.
Related papers
- A Neighbor-Searching Discrepancy-based Drift Detection Scheme for Learning Evolving Data [40.00357483768265]
This work presents a novel real concept drift detection method based on Neighbor-Searching Discrepancy.
The proposed method is able to detect real concept drift with high accuracy while ignoring virtual drift.
It can also indicate the direction of the classification boundary change by identifying the invasion or retreat of a certain class.
arXiv Detail & Related papers (2024-05-23T04:03:36Z) - Autoregressive based Drift Detection Method [0.0]
We propose a new concept drift detection method based on autoregressive models called ADDM.
Our results show that this new concept drift detection method outperforms the state-of-the-art drift detection methods.
arXiv Detail & Related papers (2022-03-09T14:36:16Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Task-Sensitive Concept Drift Detector with Metric Learning [7.706795195017394]
We propose a novel task-sensitive drift detection framework, which is able to detect drifts without access to true labels during inference.
It is able to detect real drift, where the drift affects the classification performance, while it properly ignores virtual drift.
We evaluate the performance of the proposed framework with a novel metric, which accumulates the standard metrics of detection accuracy, false positive rate and detection delay into one value.
arXiv Detail & Related papers (2021-08-16T09:10:52Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments.
Anomalies can come either from real changes in the environment (real drift) or from faulty sensory devices (virtual drift)
arXiv Detail & Related papers (2021-07-28T10:19:58Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Automatic Learning to Detect Concept Drift [40.69280758487987]
We propose Meta-ADD, a novel framework that learns to classify concept drift by tracking the changed pattern of error rates.
Specifically, in the training phase, we extract meta-features based on the error rates of various concept drift, after which a meta-detector is developed via prototypical neural network.
In the detection phase, the learned meta-detector is fine-tuned to adapt to the corresponding data stream via stream-based active learning.
arXiv Detail & Related papers (2021-05-04T11:10:39Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.