A Neighbor-Searching Discrepancy-based Drift Detection Scheme for Learning Evolving Data
- URL: http://arxiv.org/abs/2405.14153v1
- Date: Thu, 23 May 2024 04:03:36 GMT
- Title: A Neighbor-Searching Discrepancy-based Drift Detection Scheme for Learning Evolving Data
- Authors: Feng Gu, Jie Lu, Zhen Fang, Kun Wang, Guangquan Zhang,
- Abstract summary: This work presents a novel real concept drift detection method based on Neighbor-Searching Discrepancy.
The proposed method is able to detect real concept drift with high accuracy while ignoring virtual drift.
It can also indicate the direction of the classification boundary change by identifying the invasion or retreat of a certain class.
- Score: 40.00357483768265
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Uncertain changes in data streams present challenges for machine learning models to dynamically adapt and uphold performance in real-time. Particularly, classification boundary change, also known as real concept drift, is the major cause of classification performance deterioration. However, accurately detecting real concept drift remains challenging because the theoretical foundations of existing drift detection methods - two-sample distribution tests and monitoring classification error rate, both suffer from inherent limitations such as the inability to distinguish virtual drift (changes not affecting the classification boundary, will introduce unnecessary model maintenance), limited statistical power, or high computational cost. Furthermore, no existing detection method can provide information on the trend of the drift, which could be invaluable for model maintenance. This work presents a novel real concept drift detection method based on Neighbor-Searching Discrepancy, a new statistic that measures the classification boundary difference between two samples. The proposed method is able to detect real concept drift with high accuracy while ignoring virtual drift. It can also indicate the direction of the classification boundary change by identifying the invasion or retreat of a certain class, which is also an indicator of separability change between classes. A comprehensive evaluation of 11 experiments is conducted, including empirical verification of the proposed theory using artificial datasets, and experimental comparisons with commonly used drift handling methods on real-world datasets. The results show that the proposed theory is robust against a range of distributions and dimensions, and the drift detection method outperforms state-of-the-art alternative methods.
Related papers
- Online Drift Detection with Maximum Concept Discrepancy [13.48123472458282]
We propose MCD-DD, a novel concept drift detection method based on maximum concept discrepancy.
Our method can adaptively identify varying forms of concept drift by contrastive learning of concept embeddings.
arXiv Detail & Related papers (2024-07-07T13:57:50Z) - A comprehensive analysis of concept drift locality in data streams [3.5897534810405403]
Concept drift must be detected for effective model adaptation to evolving data properties.
We present a novel categorization of concept drift based on its locality and scale.
We conduct a comparative assessment of 9 state-of-the-art drift detectors across diverse difficulties.
arXiv Detail & Related papers (2023-11-10T20:57:43Z) - Variational Classification [51.2541371924591]
We derive a variational objective to train the model, analogous to the evidence lower bound (ELBO) used to train variational auto-encoders.
Treating inputs to the softmax layer as samples of a latent variable, our abstracted perspective reveals a potential inconsistency.
We induce a chosen latent distribution, instead of the implicit assumption found in a standard softmax layer.
arXiv Detail & Related papers (2023-05-17T17:47:19Z) - CADM: Confusion Model-based Detection Method for Real-drift in Chunk
Data Stream [3.0885191226198785]
Concept drift detection has attracted considerable attention due to its importance in many real-world applications such as health monitoring and fault diagnosis.
We propose a new approach to detect real-drift in the chunk data stream with limited annotations based on concept confusion.
arXiv Detail & Related papers (2023-03-25T08:59:27Z) - Benchmarking common uncertainty estimation methods with
histopathological images under domain shift and label noise [62.997667081978825]
In high-risk environments, deep learning models need to be able to judge their uncertainty and reject inputs when there is a significant chance of misclassification.
We conduct a rigorous evaluation of the most commonly used uncertainty and robustness methods for the classification of Whole Slide Images.
We observe that ensembles of methods generally lead to better uncertainty estimates as well as an increased robustness towards domain shifts and label noise.
arXiv Detail & Related papers (2023-01-03T11:34:36Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
We train a generative model to learn perturbations from data and define specifications with respect to the output of the learned model.
A unique challenge arising from this setting is that existing verifiers cannot tightly approximate sigmoid activations.
We propose a general meta-algorithm for handling sigmoid activations which leverages classical notions of counter-example-guided abstraction refinement.
arXiv Detail & Related papers (2022-06-08T04:09:13Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
Deep neural networks often make inaccurate predictions with unreliable uncertainty estimates.
We derive a Bayesian model that provides for a well-defined relationship between unlabeled inputs under distributional shift and model parameters.
We show that our method improves both accuracy and uncertainty estimation.
arXiv Detail & Related papers (2021-09-27T01:09:08Z) - Task-Sensitive Concept Drift Detector with Metric Learning [7.706795195017394]
We propose a novel task-sensitive drift detection framework, which is able to detect drifts without access to true labels during inference.
It is able to detect real drift, where the drift affects the classification performance, while it properly ignores virtual drift.
We evaluate the performance of the proposed framework with a novel metric, which accumulates the standard metrics of detection accuracy, false positive rate and detection delay into one value.
arXiv Detail & Related papers (2021-08-16T09:10:52Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.