論文の概要: Mole Recruitment: Poisoning of Image Classifiers via Selective Batch
Sampling
- arxiv url: http://arxiv.org/abs/2303.17080v1
- Date: Thu, 30 Mar 2023 00:59:37 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 14:41:55.270980
- Title: Mole Recruitment: Poisoning of Image Classifiers via Selective Batch
Sampling
- Title(参考訳): Mole Recruitment:選択バッチサンプリングによる画像分類器のポジティング
- Authors: Ethan Wisdom, Tejas Gokhale, Chaowei Xiao, Yezhou Yang
- Abstract要約: 画像やラベルを操作することなく、機械学習モデルに干渉するデータ中毒攻撃を提案する。
これは、トレーニングデータ自体に見出される最も不明瞭な自然サンプルを単純に活用することで達成される。
私たちは、モールを、他のクラスのサンプルと最もよく似ているクラスのトレーニングサンプルとして定義します。
- 参考スコア(独自算出の注目度): 41.29604559362772
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we present a data poisoning attack that confounds machine
learning models without any manipulation of the image or label. This is
achieved by simply leveraging the most confounding natural samples found within
the training data itself, in a new form of a targeted attack coined "Mole
Recruitment." We define moles as the training samples of a class that appear
most similar to samples of another class, and show that simply restructuring
training batches with an optimal number of moles can lead to significant
degradation in the performance of the targeted class. We show the efficacy of
this novel attack in an offline setting across several standard image
classification datasets, and demonstrate the real-world viability of this
attack in a continual learning (CL) setting. Our analysis reveals that
state-of-the-art models are susceptible to Mole Recruitment, thereby exposing a
previously undetected vulnerability of image classifiers.
- Abstract(参考訳): 本研究では,画像やラベルを操作せずに機械学習モデルを構築するデータ中毒攻撃を提案する。
これは、トレーニングデータ自体に見出される最も不明瞭な天然サンプルを、"Mole Recruitment"と呼ばれる新たな攻撃形態で単純に活用することで達成される。
私たちはmolesを、他のクラスのサンプルと最もよく似たクラスのトレーニングサンプルと定義し、トレーニングバッチを最適な数のmolesで再構成するだけで、ターゲットクラスのパフォーマンスが大幅に低下する可能性があることを示します。
いくつかの標準画像分類データセットにまたがるオフライン環境でこの新たな攻撃の有効性を示し、連続学習(CL)環境でこの攻撃の現実的生存可能性を示す。
分析の結果,最先端のモデルがモグラ採用の影響を受けやすいことが明らかとなり,それまで検出されていなかった画像分類器の脆弱性が露呈された。
関連論文リスト
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
本稿では,言語誘導型生成対実画像を用いた分類モデル強化のための新しいフレームワークを提案する。
逆ファクト画像データセットを用いてモデルをテストすることにより、モデルの弱点を同定する。
我々は、分類モデルを微調整し強化するために、デファクトイメージを拡張データセットとして採用する。
論文 参考訳(メタデータ) (2024-06-19T08:07:14Z) - Object-oriented backdoor attack against image captioning [40.5688859498834]
画像分類タスクに対するバックドア攻撃は広く研究され、成功したことが証明されている。
本稿では,トレーニングデータから画像キャプションモデルへのバックドア攻撃について検討する。
本手法は,画像キャプティングモデルのバックドア攻撃に対する弱点を証明し,画像キャプティング分野におけるバックドア攻撃に対する防御意識を高めることを期待する。
論文 参考訳(メタデータ) (2024-01-05T01:52:13Z) - Unstoppable Attack: Label-Only Model Inversion via Conditional Diffusion
Model [14.834360664780709]
モデルアタック(MIA)は、深層学習モデルの到達不可能なトレーニングセットからプライベートデータを復元することを目的としている。
そこで本研究では,条件拡散モデル(CDM)を応用したMIA手法を開発し,対象ラベル下でのサンプルの回収を行う。
実験結果から,本手法は従来手法よりも高い精度で類似したサンプルをターゲットラベルに生成できることが示唆された。
論文 参考訳(メタデータ) (2023-07-17T12:14:24Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
そこで我々は,モデルレベルの情報を通して,防衛を探索するための新しい情報尺度,すなわち,記憶の離散性(Memorization Discrepancy)を提案する。
暗黙的にデータ操作の変更をモデル出力に転送することで、メモリ識別は許容できない毒のサンプルを発見することができる。
我々は、その性質を徹底的に探求し、累積中毒に対する防御のために、離散型サンプル補正(DSC)を提案する。
論文 参考訳(メタデータ) (2023-06-06T14:45:24Z) - Amplifying Membership Exposure via Data Poisoning [18.799570863203858]
本稿では,データ中毒の第3タイプについて検討し,良心的トレーニングサンプルのプライバシー漏洩リスクを高めることを目的とした。
そこで本研究では,対象クラスの加入者への露出を増幅するために,データ中毒攻撃のセットを提案する。
この結果から,提案手法は,テスト時間モデルの性能劣化を最小限に抑えることで,メンバーシップ推定精度を大幅に向上させることができることがわかった。
論文 参考訳(メタデータ) (2022-11-01T13:52:25Z) - Pixle: a fast and effective black-box attack based on rearranging pixels [15.705568893476947]
ブラックボックスの敵攻撃は攻撃モデルの内部構造を知ることなく行うことができる。
本稿では,攻撃画像内に少数の画素を並べ替えることで,高い割合のサンプルを正しく攻撃できる新たな攻撃法を提案する。
我々の攻撃は、多数のデータセットやモデルに作用し、少数の反復が必要であり、元のサンプルと逆のサンプルの間の距離が人間の目では無視可能であることを実証する。
論文 参考訳(メタデータ) (2022-02-04T17:03:32Z) - Bridging Non Co-occurrence with Unlabeled In-the-wild Data for
Incremental Object Detection [56.22467011292147]
物体検出における破滅的忘れを緩和するために,いくつかの漸進的学習法が提案されている。
有効性にもかかわらず、これらの手法は新規クラスのトレーニングデータにラベルのないベースクラスの共起を必要とする。
そこで本研究では,新たな授業の訓練において,欠落した基本クラスが原因で生じる非発生を補うために,未ラベルのインザ・ザ・ワイルドデータを使用することを提案する。
論文 参考訳(メタデータ) (2021-10-28T10:57:25Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Sampling Attacks: Amplification of Membership Inference Attacks by
Repeated Queries [74.59376038272661]
本手法は,他の標準メンバーシップ相手と異なり,被害者モデルのスコアにアクセスできないような厳格な制限の下で動作可能な,新しいメンバーシップ推論手法であるサンプリングアタックを導入する。
ラベルのみを公開している被害者モデルでは,攻撃のサンプリングが引き続き可能であり,攻撃者はその性能の最大100%を回復できることを示す。
防衛においては,被害者モデルのトレーニング中の勾配摂動と予測時の出力摂動の形式で差分プライバシーを選択する。
論文 参考訳(メタデータ) (2020-09-01T12:54:54Z) - Towards Class-Oriented Poisoning Attacks Against Neural Networks [1.14219428942199]
機械学習システムに対する攻撃は、トレーニングデータセットに悪意のあるサンプルを意図的に注入することで、モデルのパフォーマンスを損なう。
そこで本研究では, 破損したモデルに対して, 2つの特定の予測を強制的に行うクラス指向中毒攻撃を提案する。
逆効果の最大化と、有毒なデータ生成の計算複雑性の低減を図るため、勾配に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-31T19:27:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。