Investigating and Mitigating the Side Effects of Noisy Views for Self-Supervised Clustering Algorithms in Practical Multi-View Scenarios
- URL: http://arxiv.org/abs/2303.17245v4
- Date: Mon, 25 Mar 2024 12:20:02 GMT
- Title: Investigating and Mitigating the Side Effects of Noisy Views for Self-Supervised Clustering Algorithms in Practical Multi-View Scenarios
- Authors: Jie Xu, Yazhou Ren, Xiaolong Wang, Lei Feng, Zheng Zhang, Gang Niu, Xiaofeng Zhu,
- Abstract summary: Multi-view clustering (MVC) aims at exploring category structures among multi-view data in self-supervised manners.
noisy views might seriously degenerate when the views are noisy in practical multi-view scenarios.
We propose a theoretically grounded deep MVC method (namely MVCAN) to address this issue.
- Score: 35.32285779434823
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-view clustering (MVC) aims at exploring category structures among multi-view data in self-supervised manners. Multiple views provide more information than single views and thus existing MVC methods can achieve satisfactory performance. However, their performance might seriously degenerate when the views are noisy in practical multi-view scenarios. In this paper, we formally investigate the drawback of noisy views and then propose a theoretically grounded deep MVC method (namely MVCAN) to address this issue. Specifically, we propose a novel MVC objective that enables un-shared parameters and inconsistent clustering predictions across multiple views to reduce the side effects of noisy views. Furthermore, a two-level multi-view iterative optimization is designed to generate robust learning targets for refining individual views' representation learning. Theoretical analysis reveals that MVCAN works by achieving the multi-view consistency, complementarity, and noise robustness. Finally, experiments on extensive public datasets demonstrate that MVCAN outperforms state-of-the-art methods and is robust against the existence of noisy views.
Related papers
- CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
We propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net)
It captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework.
Based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training.
arXiv Detail & Related papers (2024-03-28T15:45:03Z) - Hierarchical Mutual Information Analysis: Towards Multi-view Clustering
in The Wild [9.380271109354474]
This work proposes a deep MVC framework where data recovery and alignment are fused in a hierarchically consistent way to maximize the mutual information among different views.
To the best of our knowledge, this could be the first successful attempt to handle the missing and unaligned data problem separately with different learning paradigms.
arXiv Detail & Related papers (2023-10-28T06:43:57Z) - A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective [24.630259061774836]
This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint.
Firstly, we develop a simple and reliable multi-view clustering method SCMVC that employs variational analysis to generate consistent information.
Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views.
arXiv Detail & Related papers (2023-09-25T09:41:11Z) - Multi-View Class Incremental Learning [57.14644913531313]
Multi-view learning (MVL) has gained great success in integrating information from multiple perspectives of a dataset to improve downstream task performance.
This paper investigates a novel paradigm called multi-view class incremental learning (MVCIL), where a single model incrementally classifies new classes from a continual stream of views.
arXiv Detail & Related papers (2023-06-16T08:13:41Z) - Deep Incomplete Multi-view Clustering with Cross-view Partial Sample and
Prototype Alignment [50.82982601256481]
We propose a Cross-view Partial Sample and Prototype Alignment Network (CPSPAN) for Deep Incomplete Multi-view Clustering.
Unlike existing contrastive-based methods, we adopt pair-observed data alignment as 'proxy supervised signals' to guide instance-to-instance correspondence construction.
arXiv Detail & Related papers (2023-03-28T02:31:57Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Collaborative Attention Mechanism for Multi-View Action Recognition [75.33062629093054]
We propose a collaborative attention mechanism (CAM) for solving the multi-view action recognition problem.
The proposed CAM detects the attention differences among multi-view, and adaptively integrates frame-level information to benefit each other.
Experiments on four action datasets illustrate the proposed CAM achieves better results for each view and also boosts multi-view performance.
arXiv Detail & Related papers (2020-09-14T17:33:10Z) - Multi-view Low-rank Preserving Embedding: A Novel Method for Multi-view
Representation [11.91574721055601]
This paper proposes a novel multi-view learning method, named Multi-view Low-rank Preserving Embedding (MvLPE)
It integrates different views into one centroid view by minimizing the disagreement term, based on distance or similarity matrix among instances.
Experiments on six benchmark datasets demonstrate that the proposed method outperforms its counterparts.
arXiv Detail & Related papers (2020-06-14T12:47:25Z) - Generalized Multi-view Shared Subspace Learning using View Bootstrapping [43.027427742165095]
Key objective in multi-view learning is to model the information common to multiple parallel views of a class of objects/events to improve downstream learning tasks.
We present a neural method based on multi-view correlation to capture the information shared across a large number of views by subsampling them in a view-agnostic manner during training.
Experiments on spoken word recognition, 3D object classification and pose-invariant face recognition demonstrate the robustness of view bootstrapping to model a large number of views.
arXiv Detail & Related papers (2020-05-12T20:35:14Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.