A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective
- URL: http://arxiv.org/abs/2309.13989v1
- Date: Mon, 25 Sep 2023 09:41:11 GMT
- Title: A Novel Approach for Effective Multi-View Clustering with
Information-Theoretic Perspective
- Authors: Chenhang Cui, Yazhou Ren, Jingyu Pu, Jiawei Li, Xiaorong Pu, Tianyi
Wu, Yutao Shi, Lifang He
- Abstract summary: This study presents a new approach called Sufficient Multi-View Clustering (SUMVC) that examines the multi-view clustering framework from an information-theoretic standpoint.
Firstly, we develop a simple and reliable multi-view clustering method SCMVC that employs variational analysis to generate consistent information.
Secondly, we propose a sufficient representation lower bound to enhance consistent information and minimise unnecessary information among views.
- Score: 24.630259061774836
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Multi-view clustering (MVC) is a popular technique for improving clustering
performance using various data sources. However, existing methods primarily
focus on acquiring consistent information while often neglecting the issue of
redundancy across multiple views. This study presents a new approach called
Sufficient Multi-View Clustering (SUMVC) that examines the multi-view
clustering framework from an information-theoretic standpoint. Our proposed
method consists of two parts. Firstly, we develop a simple and reliable
multi-view clustering method SCMVC (simple consistent multi-view clustering)
that employs variational analysis to generate consistent information. Secondly,
we propose a sufficient representation lower bound to enhance consistent
information and minimise unnecessary information among views. The proposed
SUMVC method offers a promising solution to the problem of multi-view
clustering and provides a new perspective for analyzing multi-view data.
To verify the effectiveness of our model, we conducted a theoretical analysis
based on the Bayes Error Rate, and experiments on multiple multi-view datasets
demonstrate the superior performance of SUMVC.
Related papers
- CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
We propose a novel incomplete multi-view clustering network, called Cognitive Deep Incomplete Multi-view Clustering Network (CDIMC-net)
It captures the high-level features and local structure of each view by incorporating the view-specific deep encoders and graph embedding strategy into a framework.
Based on the human cognition, i.e., learning from easy to hard, it introduces a self-paced strategy to select the most confident samples for model training.
arXiv Detail & Related papers (2024-03-28T15:45:03Z) - Incomplete Contrastive Multi-View Clustering with High-Confidence
Guiding [7.305817202715752]
We propose a novel Incomplete Contrastive Multi-View Clustering method with high-confidence guiding (ICMVC)
Firstly, we proposed a multi-view consistency relation transfer plus graph convolutional network to tackle missing values problem.
Secondly, instance-level attention fusion and high-confidence guiding are proposed to exploit the complementary information.
arXiv Detail & Related papers (2023-12-14T07:28:41Z) - Semi-supervised multi-view concept decomposition [30.699496411869834]
Concept Factorization (CF) has demonstrated superior performance in multi-view clustering tasks.
We propose a novel semi-supervised multi-view concept factorization model, named SMVCF.
We conduct experiments on four diverse datasets to evaluate the performance of SMVCF.
arXiv Detail & Related papers (2023-07-03T10:50:44Z) - Multi-View Class Incremental Learning [57.14644913531313]
Multi-view learning (MVL) has gained great success in integrating information from multiple perspectives of a dataset to improve downstream task performance.
This paper investigates a novel paradigm called multi-view class incremental learning (MVCIL), where a single model incrementally classifies new classes from a continual stream of views.
arXiv Detail & Related papers (2023-06-16T08:13:41Z) - One-step Multi-view Clustering with Diverse Representation [47.41455937479201]
We propose a one-step multi-view clustering with diverse representation method, which incorporates multi-view learning and $k$-means into a unified framework.
We develop an efficient optimization algorithm with proven convergence to solve the resultant problem.
arXiv Detail & Related papers (2023-06-08T02:52:24Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
We formulate a novel clustering model, which exploits the non-negative feature property and incorporates the multi-view information into a unified joint learning framework.
We also explore, for the first time, the multi-model non-negative graph-based approach to clustering data based on deep features.
arXiv Detail & Related papers (2022-11-03T08:18:27Z) - Unsupervised Multi-view Clustering by Squeezing Hybrid Knowledge from
Cross View and Each View [68.88732535086338]
This paper proposes a new multi-view clustering method, low-rank subspace multi-view clustering based on adaptive graph regularization.
Experimental results for five widely used multi-view benchmarks show that our proposed algorithm surpasses other state-of-the-art methods by a clear margin.
arXiv Detail & Related papers (2020-08-23T08:25:06Z) - Generative Partial Multi-View Clustering [133.36721417531734]
We propose a generative partial multi-view clustering model, named as GP-MVC, to address the incomplete multi-view problem.
First, multi-view encoder networks are trained to learn common low-dimensional representations, followed by a clustering layer to capture the consistent cluster structure across multiple views.
Second, view-specific generative adversarial networks are developed to generate the missing data of one view conditioning on the shared representation given by other views.
arXiv Detail & Related papers (2020-03-29T17:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.