Fault Tolerant Non-Clifford State Preparation for Arbitrary Rotations
- URL: http://arxiv.org/abs/2303.17380v1
- Date: Thu, 30 Mar 2023 13:46:52 GMT
- Title: Fault Tolerant Non-Clifford State Preparation for Arbitrary Rotations
- Authors: Hyeongrak Choi, Frederic T. Chong, Dirk Englund, Yongshan Ding
- Abstract summary: We propose a postselection-based algorithm to efficiently prepare resource states for gate teleportation.
Our algorithm achieves fault tolerance, demonstrating the exponential suppression of logical errors with code distance.
Our approach presents a promising path to reducing the resource requirement for quantum algorithms on error-corrected and noisy intermediate-scale quantum computers.
- Score: 3.47670594338385
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum error correction is an essential component for practical quantum
computing on noisy quantum hardware. However, logical operations on
error-corrected qubits require a significant resource overhead, especially for
high-precision and high-fidelity non-Clifford rotation gates. To address this
issue, we propose a postselection-based algorithm to efficiently prepare
resource states for gate teleportation. Our algorithm achieves fault tolerance,
demonstrating the exponential suppression of logical errors with code distance,
and it applies to any stabilizer codes. We provide analytical derivations and
numerical simulations of the fidelity and success probability of the algorithm.
We benchmark the method on surface code and show a factor of 100 to 10,000
reduction in space-time overhead compared to existing methods. Overall, our
approach presents a promising path to reducing the resource requirement for
quantum algorithms on error-corrected and noisy intermediate-scale quantum
computers.
Related papers
- Application of zero-noise extrapolation-based quantum error mitigation to a silicon spin qubit [0.08603957004874943]
We report the implementation of a zero-noise extrapolation-based error mitigation technique on a silicon spin qubit platform.
This technique has been successfully demonstrated for other platforms such as superconducting qubits, trapped-ion qubits, and photonic processors.
arXiv Detail & Related papers (2024-10-14T09:51:21Z) - Algorithmic Fault Tolerance for Fast Quantum Computing [37.448838730002905]
We show that fault-tolerant logical operations can be performed with constant time overhead for a broad class of quantum codes.
We prove that the deviation from the ideal measurement result distribution can be made exponentially small in the code distance.
Our work sheds new light on the theory of fault tolerance, potentially reducing the space-time cost of practical fault-tolerant quantum computation by orders of magnitude.
arXiv Detail & Related papers (2024-06-25T15:43:25Z) - T-Count Optimizing Genetic Algorithm for Quantum State Preparation [0.05999777817331316]
We present and utilize a genetic algorithm for state preparation circuits consisting of gates from the Clifford + T gate set.
Our algorithm does automatically generate fault tolerantly implementable solutions where the number of the most error prone components is reduced.
arXiv Detail & Related papers (2024-06-06T12:26:14Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Transversal Injection: A method for direct encoding of ancilla states
for non-Clifford gates using stabiliser codes [55.90903601048249]
We introduce a protocol to potentially reduce this overhead for non-Clifford gates.
Preliminary results hint at high quality fidelities at larger distances.
arXiv Detail & Related papers (2022-11-18T06:03:10Z) - Erasure conversion for fault-tolerant quantum computing in alkaline
earth Rydberg atom arrays [3.575043595126111]
We propose a qubit encoding and gate protocol for $171$Yb neutral atom qubits that converts the dominant physical errors into erasures.
We estimate that 98% of errors can be converted into erasures.
arXiv Detail & Related papers (2022-01-10T18:56:31Z) - Fundamental limits of quantum error mitigation [0.0]
We show how error-mitigation algorithms can reduce the computation error as a function of their sampling overhead.
Our results provide a means to identify when a given quantum error-mitigation strategy is optimal and when there is potential room for improvement.
arXiv Detail & Related papers (2021-09-09T17:56:14Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.