Application of zero-noise extrapolation-based quantum error mitigation to a silicon spin qubit
- URL: http://arxiv.org/abs/2410.10339v1
- Date: Mon, 14 Oct 2024 09:51:21 GMT
- Title: Application of zero-noise extrapolation-based quantum error mitigation to a silicon spin qubit
- Authors: Hanseo Sohn, Jaewon Jung, Jaemin Park, Hyeongyu Jang, Lucas E. A. Stehouwer, Davide Degli Esposti, Giordano Scappucci, Dohun Kim,
- Abstract summary: We report the implementation of a zero-noise extrapolation-based error mitigation technique on a silicon spin qubit platform.
This technique has been successfully demonstrated for other platforms such as superconducting qubits, trapped-ion qubits, and photonic processors.
- Score: 0.08603957004874943
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As quantum computing advances towards practical applications, reducing errors remains a crucial frontier for developing near-term devices. Errors in the quantum gates and quantum state readout could result in noisy circuits, which would prevent the acquisition of the exact expectation values of the observables. Although ultimate robustness to errors is known to be achievable by quantum error correction-based fault-tolerant quantum computing, its successful implementation demands large-scale quantum processors with low average error rates that are not yet widely available. In contrast, quantum error mitigation (QEM) offers more immediate and practical techniques, which do not require extensive resources and can be readily applied to existing quantum devices to improve the accuracy of the expectation values. Here, we report the implementation of a zero-noise extrapolation-based error mitigation technique on a silicon spin qubit platform. This technique has recently been successfully demonstrated for other platforms such as superconducting qubits, trapped-ion qubits, and photonic processors. We first explore three methods for amplifying noise on a silicon spin qubit: global folding, local folding, and pulse stretching, using a standard randomized benchmarking protocol. We then apply global folding-based zero-noise extrapolation to the state tomography and achieve a state fidelity of 99.96% (98.52%), compared to the unmitigated fidelity of 75.82% (82.16%) for different preparation states. The results show that the zero-noise extrapolation technique is a versatile approach that is generally adaptable to quantum computing platforms with different noise characteristics through appropriate noise amplification methods.
Related papers
- Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Fault Tolerant Non-Clifford State Preparation for Arbitrary Rotations [3.47670594338385]
We propose a postselection-based algorithm to efficiently prepare resource states for gate teleportation.
Our algorithm achieves fault tolerance, demonstrating the exponential suppression of logical errors with code distance.
Our approach presents a promising path to reducing the resource requirement for quantum algorithms on error-corrected and noisy intermediate-scale quantum computers.
arXiv Detail & Related papers (2023-03-30T13:46:52Z) - Universal Sampling Lower Bounds for Quantum Error Mitigation [0.0]
We characterize the fundamental sampling cost -- how many times an arbitrary mitigation protocol must run a noisy quantum device.
Our results imply that the sampling cost required for a wide class of protocols to mitigate errors must grow exponentially with the circuit depth for various noise models.
arXiv Detail & Related papers (2022-08-19T06:56:11Z) - Mitigating errors by quantum verification and post-selection [0.0]
We present a technique for quantum error mitigation based on quantum verification, the so-called accreditation protocol, together with post-selection.
We discuss the sample complexity of our procedure and provide rigorous guarantees of errors being mitigated under some realistic assumptions on the noise.
Our technique also allows for time dependant behaviours, as we allow for the output states to be different between different runs of the accreditation protocol.
arXiv Detail & Related papers (2021-09-29T10:29:39Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
We develop a protocol for fault-tolerant encoded quantum computing components in the presence of amplitude-damping noise.
We describe a universal set of fault-tolerant encoded gadgets and compute the pseudothreshold for the noise.
Our work demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models.
arXiv Detail & Related papers (2021-07-12T14:59:54Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.