論文の概要: Learning in Factored Domains with Information-Constrained Visual
Representations
- arxiv url: http://arxiv.org/abs/2303.17508v1
- Date: Thu, 30 Mar 2023 16:22:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-31 12:53:21.485720
- Title: Learning in Factored Domains with Information-Constrained Visual
Representations
- Title(参考訳): 情報制約付き視覚表現を用いた因子領域の学習
- Authors: Tyler Malloy, Miao Liu, Matthew D. Riemer, Tim Klinger, Gerald
Tesauro, Chris R. Sims
- Abstract要約: 本稿では、視覚学習タスクで使用される$beta$-Variational Auto-Encoderの変形形式に基づくヒューマンファクター表現学習のモデルを提案する。
その結果,学習速度と再現精度の関係から,モデル潜在次元空間の情報複雑性のトレードオフが示された。
- 参考スコア(独自算出の注目度): 14.674830543204317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans learn quickly even in tasks that contain complex visual information.
This is due in part to the efficient formation of compressed representations of
visual information, allowing for better generalization and robustness. However,
compressed representations alone are insufficient for explaining the high speed
of human learning. Reinforcement learning (RL) models that seek to replicate
this impressive efficiency may do so through the use of factored
representations of tasks. These informationally simplistic representations of
tasks are similarly motivated as the use of compressed representations of
visual information. Recent studies have connected biological visual perception
to disentangled and compressed representations. This raises the question of how
humans learn to efficiently represent visual information in a manner useful for
learning tasks. In this paper we present a model of human factored
representation learning based on an altered form of a $\beta$-Variational
Auto-encoder used in a visual learning task. Modelling results demonstrate a
trade-off in the informational complexity of model latent dimension spaces,
between the speed of learning and the accuracy of reconstructions.
- Abstract(参考訳): 人間は複雑な視覚情報を含むタスクでも素早く学習する。
これは、視覚情報の圧縮表現を効率的に形成し、より良い一般化と堅牢性を可能にするためである。
しかし, 圧縮表現だけでは, 人間の学習速度を説明するには不十分である。
この印象的な効率を再現しようとする強化学習(RL)モデルは、タスクの因子表現を使用することで実現することができる。
これらの情報的に単純化されたタスクの表現は、同様に視覚情報の圧縮表現の使用によって動機付けられたものである。
近年の研究では、生物学的視覚知覚と非絡み合いや圧縮された表現を関連づけている。
これは、人間がどのように視覚情報を効率的に表現し、タスクを学習するのにどのように役立つかという問題を提起する。
本稿では、視覚学習タスクで使用される$\beta$-Variational Auto-Encoderの変形形式に基づくヒューマンファクター表現学習のモデルを提案する。
モデリング結果は、学習の速度と再現の精度の間のモデル潜在次元空間の情報複雑性のトレードオフを示す。
関連論文リスト
- What Makes Pre-Trained Visual Representations Successful for Robust
Manipulation? [57.92924256181857]
照明やシーンテクスチャの微妙な変化の下では,操作や制御作業のために設計された視覚表現が必ずしも一般化されないことがわかった。
創発的セグメンテーション能力は,ViTモデルにおける分布外一般化の強い予測因子であることがわかった。
論文 参考訳(メタデータ) (2023-11-03T18:09:08Z) - Visual Grounding Helps Learn Word Meanings in Low-Data Regimes [47.7950860342515]
現代のニューラル言語モデル(LM)は、人間の文の生成と理解をモデル化するための強力なツールである。
しかし、これらの結果を得るためには、LMは明らかに非人間的な方法で訓練されなければならない。
より自然主義的に訓練されたモデルは、より人間らしい言語学習を示すのか?
本稿では,言語習得における重要なサブタスクである単語学習の文脈において,この問題を考察する。
論文 参考訳(メタデータ) (2023-10-20T03:33:36Z) - Learning Transferable Pedestrian Representation from Multimodal
Information Supervision [174.5150760804929]
VAL-PATは、移動可能な表現を学習し、様々な歩行者分析タスクをマルチモーダル情報で強化する新しいフレームワークである。
まず、LUPerson-TAデータセットで事前トレーニングを行い、各画像にはテキストと属性アノテーションが含まれている。
次に、学習した表現を、人物のreID、人物属性認識、テキストベースの人物検索など、さまざまな下流タスクに転送する。
論文 参考訳(メタデータ) (2023-04-12T01:20:58Z) - Understanding Self-Supervised Pretraining with Part-Aware Representation
Learning [88.45460880824376]
本研究では,自己教師型表現事前学習手法がパート認識表現を学習する能力について検討する。
その結果,完全教師付きモデルはオブジェクトレベルの認識において自己教師付きモデルよりも優れていた。
論文 参考訳(メタデータ) (2023-01-27T18:58:42Z) - Entropy-driven Unsupervised Keypoint Representation Learning in Videos [7.940371647421243]
本稿では,ビデオから意味のある表現を教師なしで学習するための新しいアプローチを提案する。
画素近傍のテクスティカルなエントロピーとその時間的進化は,特徴の学習に有用な本質的な監督信号を生み出すと論じる。
私たちの経験的な結果は、静的なオブジェクトや動的オブジェクトへの出席や突然の入場や退場といった課題を解決する情報駆動キーポイントのパフォーマンスに優れています。
論文 参考訳(メタデータ) (2022-09-30T12:03:52Z) - A Benchmark for Compositional Visual Reasoning [5.576460160219606]
我々は、よりデータ効率のよい学習アルゴリズムへ進むために、新しいビジュアル推論ベンチマークであるコンポジションビジュアルリレーショナル(CVR)を導入する。
我々は,流体知能と非言語推論テストからインスピレーションを得て,抽象ルールと関連する画像データセットを大規模に作成するための新しい手法について述べる。
提案するベンチマークには, タスクルール間のサンプル効率, 一般化, 転送, および, 構成性を活用する能力が含まれている。
論文 参考訳(メタデータ) (2022-06-11T00:04:49Z) - Task-Induced Representation Learning [14.095897879222672]
視覚的に複雑な環境における意思決定における表現学習手法の有効性を評価する。
表現学習は、視覚的に複雑なシーンであっても、目に見えないタスクのサンプル効率を向上する。
論文 参考訳(メタデータ) (2022-04-25T17:57:10Z) - Curious Representation Learning for Embodied Intelligence [81.21764276106924]
近年,自己指導型表現学習は顕著な成功を収めている。
しかし、真にインテリジェントなエージェントを構築するためには、環境から学習できる表現学習アルゴリズムを構築する必要がある。
本稿では,強化学習方針と視覚的表現モデルを同時に学習する,好奇心をそそる表現学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-03T17:59:20Z) - Heterogeneous Contrastive Learning: Encoding Spatial Information for
Compact Visual Representations [183.03278932562438]
本稿では,エンコーディング段階に空間情報を加えることで,対照的な目的と強いデータ拡張操作の間の学習の不整合を緩和する効果的な手法を提案する。
提案手法は,視覚表現の効率を向上し,自己指導型視覚表現学習の今後の研究を刺激する鍵となるメッセージを提供する。
論文 参考訳(メタデータ) (2020-11-19T16:26:25Z) - What Can You Learn from Your Muscles? Learning Visual Representation
from Human Interactions [50.435861435121915]
視覚のみの表現よりも優れた表現を学べるかどうかを調べるために,人間のインタラクションとアテンション・キューを用いている。
実験の結果,我々の「音楽監督型」表現は,視覚のみの最先端手法であるMoCoよりも優れていた。
論文 参考訳(メタデータ) (2020-10-16T17:46:53Z) - Acceleration of Actor-Critic Deep Reinforcement Learning for Visual
Grasping in Clutter by State Representation Learning Based on Disentanglement
of a Raw Input Image [4.970364068620608]
アクター・クリティック・ディープ・強化学習(RL)法は、多種多様な物体をつかむ際には、通常非常に低性能である。
状態表現学習 (SRL) を用いて, RL において重要な情報をまずエンコードする。
その結果,原画像の歪みに基づく前処理が,コンパクトな表現を効果的に捉える鍵であることが判明した。
論文 参考訳(メタデータ) (2020-02-27T03:58:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。