論文の概要: Improving the Diproche CNL through Autoformalization via Large Language Models
- arxiv url: http://arxiv.org/abs/2303.17513v2
- Date: Tue, 2 Apr 2024 11:29:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 13:51:35.904448
- Title: Improving the Diproche CNL through Autoformalization via Large Language Models
- Title(参考訳): 大規模言語モデルによるオートフォーマライゼーションによるディプロッシュCNLの改良
- Authors: Merlin Carl,
- Abstract要約: Diprocheシステムは、ドイツ語の制御された断片で書かれたテキストの自動証明チェッカーである。
本稿では,Diprocheの文脈において,大規模言語モデルによる自己形式化の促進の可能性について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Diproche system is an automated proof checker for texts written in a controlled fragment of German, designed for didactical applications in classes introducing students to proofs for the first time. The first version of the system used a controlled natural language for which a Prolog formalization routine was written. In this paper, we explore the possibility of prompting large language models for autoformalization in the context of Diproche, with encouraging first results.
- Abstract(参考訳): Diprocheシステム(ディプロッシュシステム、英: Diproche system)は、ドイツ語の制御された断片で書かれたテキストの自動証明チェッカーである。
システムの最初のバージョンは、Prologの形式化ルーチンが書かれた制御された自然言語を使用していた。
本稿では,Diprocheの文脈において,大規模言語モデルによる自己形式化を促進させる可能性について検討する。
関連論文リスト
- Using Large Language Models for (De-)Formalization and Natural Argumentation Exercises for Beginner's Students [0.0]
現在開発中の2つのシステムは、自然言語と命題論理と一階述語論理の言語を相互に翻訳する際の(i)エクササイズの自動修正に大規模な言語モデルを使用している。
論文 参考訳(メタデータ) (2023-04-12T23:05:02Z) - nl2spec: Interactively Translating Unstructured Natural Language to
Temporal Logics with Large Language Models [3.1143846686797314]
大規模言語モデル(LLM)を適用するためのフレームワークであるnl2specは、構造化されていない自然言語から正式な仕様を導出する。
本稿では,自然言語におけるシステム要求のあいまいさを検知し,解決する新たな手法を提案する。
ユーザは、これらのサブ翻訳を反復的に追加、削除、編集して、不正なフォーマル化を修正する。
論文 参考訳(メタデータ) (2023-03-08T20:08:53Z) - Bidirectional Language Models Are Also Few-shot Learners [54.37445173284831]
SAP(Sequential Autoregressive Prompting)は,双方向モデルの高速化を実現する技術である。
SAPは質問応答と要約に有効であることを示す。
この結果から,より広範な言語モデルの創発的特性として,プロンプトに基づく学習が証明された。
論文 参考訳(メタデータ) (2022-09-29T01:35:57Z) - Autoformalization with Large Language Models [22.86710743804944]
自動形式化システムの成功は、形式検証、プログラム合成、人工知能の分野を前進させる可能性がある。
大規模な言語モデルがこの目標に向けて新たな展望を提供することを示す。
我々の手法はMiniF2F定理証明ベンチマークで新たな最先端結果をもたらし、証明レートを29.6%から35.2%に改善した。
論文 参考訳(メタデータ) (2022-05-25T09:53:30Z) - Controlling Translation Formality Using Pre-trained Multilingual
Language Models [19.465727478912072]
本稿では,メリーランド大学のiwsltにおける音声言語翻訳における形式性制御特別課題への提出について述べる。
本研究は,テキスト型多言語モデルを用いて,この問題にどの程度対処できるかを検討する。
その結果、この戦略は、専用翻訳モデルによって達成された翻訳品質と形式制御にアプローチできることが示唆された。
論文 参考訳(メタデータ) (2022-05-13T13:47:28Z) - Detecting Text Formality: A Study of Text Classification Approaches [78.11745751651708]
本研究は,統計的,ニューラルベース,トランスフォーマーベースの機械学習手法に基づく形式性検出手法の体系的研究を初めて行う。
単言語,多言語,言語横断の3種類の実験を行った。
本研究は,モノリンガルおよび多言語形式分類タスクのためのトランスフォーマーベースモデルに対するChar BiLSTMモデルの克服を示す。
論文 参考訳(メタデータ) (2022-04-19T16:23:07Z) - Multilingual Generative Language Models for Zero-Shot Cross-Lingual
Event Argument Extraction [80.61458287741131]
ゼロショット言語間イベント引数抽出(EAE)における多言語事前学習型生成言語モデルの活用について検討する。
EAEを言語生成タスクとして定式化することにより、イベント構造を効果的にエンコードし、引数間の依存関係をキャプチャする。
提案するモデルでは,多言語事前学習型生成言語モデルを用いて,入力文から抽出した引数で言語に依存しないテンプレートを補う文を生成する。
論文 参考訳(メタデータ) (2022-03-15T23:00:32Z) - Differentiable Prompt Makes Pre-trained Language Models Better Few-shot
Learners [23.150999852147283]
本研究は,differiAble pRompT (DART) という新規で効率的なアプローチを提案する。
小さな言語モデルを、素早いエンジニアリングなしで、より優れた数ショットの学習者に変換することができる。
標準NLPタスクの包括的な評価は、提案手法がより優れた数ショット性能を実現することを示す。
論文 参考訳(メタデータ) (2021-08-30T12:29:25Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
クロスリンガルプリトレーニングは、2つの言語の語彙的表現と高レベル表現を整列させるモデルを必要とする。
これまでの研究では、これは表現が十分に整合していないためです。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
論文 参考訳(メタデータ) (2021-03-18T21:17:58Z) - SLM: Learning a Discourse Language Representation with Sentence
Unshuffling [53.42814722621715]
談話言語表現を学習するための新しい事前学習目的である文レベル言語モデリングを導入する。
本モデルでは,この特徴により,従来のBERTの性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2020-10-30T13:33:41Z) - Generative Language Modeling for Automated Theorem Proving [94.01137612934842]
この研究は、自動定理プロバーの人間に対する大きな制限が言語モデルから生成することで対処できる可能性によって動機づけられている。
本稿ではメタマス形式化言語のための自動証明と証明アシスタント GPT-f を提案し,その性能を解析する。
論文 参考訳(メタデータ) (2020-09-07T19:50:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。