Using AI to Measure Parkinson's Disease Severity at Home
- URL: http://arxiv.org/abs/2303.17573v4
- Date: Thu, 17 Aug 2023 16:38:15 GMT
- Title: Using AI to Measure Parkinson's Disease Severity at Home
- Authors: Md Saiful Islam, Wasifur Rahman, Abdelrahman Abdelkader, Phillip T.
Yang, Sangwu Lee, Jamie L. Adams, Ruth B. Schneider, E. Ray Dorsey, Ehsan
Hoque
- Abstract summary: We present an artificial intelligence system to assess the motor performance of individuals with Parkinson's disease (PD)
Data from 250 global participants were rated by three expert neurologists following the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS)
Our machine learning model trained on these measures outperformed an MDS-UPDRS certified rater, with a mean absolute error (MAE) of 0.59 compared to the rater's MAE of 0.79.
- Score: 2.656113227046603
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an artificial intelligence system to remotely assess the motor
performance of individuals with Parkinson's disease (PD). Participants
performed a motor task (i.e., tapping fingers) in front of a webcam, and data
from 250 global participants were rated by three expert neurologists following
the Movement Disorder Society Unified Parkinson's Disease Rating Scale
(MDS-UPDRS). The neurologists' ratings were highly reliable, with an
intra-class correlation coefficient (ICC) of 0.88. We developed computer
algorithms to obtain objective measurements that align with the MDS-UPDRS
guideline and are strongly correlated with the neurologists' ratings. Our
machine learning model trained on these measures outperformed an MDS-UPDRS
certified rater, with a mean absolute error (MAE) of 0.59 compared to the
rater's MAE of 0.79. However, the model performed slightly worse than the
expert neurologists (0.53 MAE). The methodology can be replicated for similar
motor tasks, providing the possibility of evaluating individuals with PD and
other movement disorders remotely, objectively, and in areas with limited
access to neurological care.
Related papers
- AI WALKUP: A Computer-Vision Approach to Quantifying MDS-UPDRS in Parkinson's Disease [26.404367811027996]
Parkinson's Disease (PD) is the second most common neurodegenerative disorder.
The existing assessment method for PD is usually the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS) to assess the severity of various types of motor symptoms and disease progression.
We want to use a computer vision based solution to capture human pose images based on a camera, reconstruct and perform motion analysis using algorithms, and extract the features of the amount of motion through feature engineering.
arXiv Detail & Related papers (2024-04-02T05:53:34Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - GaitForeMer: Self-Supervised Pre-Training of Transformers via Human
Motion Forecasting for Few-Shot Gait Impairment Severity Estimation [27.081767446317095]
We introduce GaitForeMer, Gait Forecasting and impairment estimation transforMer.
GaitForeMer is first pre-trained on public datasets to forecast gait movements and then applied to clinical data to predict gait impairment severity.
Our method outperforms previous approaches that rely solely on clinical data by a large margin, achieving an F1 score of 0.76, precision of 0.79, and recall of 0.75.
arXiv Detail & Related papers (2022-06-30T21:29:47Z) - Multimodal Indoor Localisation for Measuring Mobility in Parkinson's
Disease using Transformers [2.683727984711853]
We use data collected from 10 people with Parkinson's, and 10 controls, each of whom lived for five days in a smart home with various sensors.
In order to more effectively localise them indoors, we propose a transformer-based approach utilizing two data modalities.
Our approach makes asymmetric and dynamic correlations by a) learning temporal correlations at different scales and levels, and b. utilizing various gating mechanisms to select relevant features within modality and suppress unnecessary modalities.
arXiv Detail & Related papers (2022-05-12T15:05:57Z) - Subgroup discovery of Parkinson's Disease by utilizing a multi-modal
smart device system [63.20765930558542]
We used smartwatches and smartphones to collect multi-modal data from 504 participants, including PD patients, DD and HC.
We were able to show that by combining various modalities, classification accuracy improved and further PD clusters were discovered.
arXiv Detail & Related papers (2022-05-12T08:59:57Z) - Reducing a complex two-sided smartwatch examination for Parkinson's
Disease to an efficient one-sided examination preserving machine learning
accuracy [63.20765930558542]
We have recorded participants performing technology-based assessments in a prospective study to research Parkinson's Disease (PD)
This study provided the largest PD sample size of two-hand synchronous smartwatch measurements.
arXiv Detail & Related papers (2022-05-11T09:12:59Z) - Exploring Motion Boundaries in an End-to-End Network for Vision-based
Parkinson's Severity Assessment [2.359557447960552]
We present an end-to-end deep learning framework to measure Parkinson's disease severity in two important components, hand movement and gait.
Our method leverages on an Inflated 3D CNN trained by a temporal segment framework to learn spatial and long temporal structure in video data.
We evaluate our proposed method on a dataset of 25 PD patients, obtaining 72.3% and 77.1% top-1 accuracy on hand movement and gait tasks respectively.
arXiv Detail & Related papers (2020-12-17T19:20:17Z) - Vision-based Estimation of MDS-UPDRS Gait Scores for Assessing
Parkinson's Disease Motor Severity [39.51722822896373]
Parkinson's disease (PD) is a progressive neurological disorder affecting motor function.
Physical severity of PD impairments can be quantified through the Movement Disorder Society Unified Parkinson's Disease Rating Scale.
We propose a computer vision-based model that observes non-intrusive video recordings of individuals, extracts their 3D body skeletons, tracks them through time, and classifies the movements according to the MDS-UPDRS gait scores.
arXiv Detail & Related papers (2020-07-17T11:49:30Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - 4D Spatio-Temporal Deep Learning with 4D fMRI Data for Autism Spectrum
Disorder Classification [69.62333053044712]
We propose a 4D convolutional deep learning approach for ASD classification where we jointly learn from spatial and temporal data.
We employ 4D neural networks and convolutional-recurrent models which outperform a previous approach with an F1-score of 0.71 compared to an F1-score of 0.65.
arXiv Detail & Related papers (2020-04-21T17:19:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.