Ensemble weather forecast post-processing with a flexible probabilistic
neural network approach
- URL: http://arxiv.org/abs/2303.17610v3
- Date: Thu, 27 Apr 2023 18:34:54 GMT
- Title: Ensemble weather forecast post-processing with a flexible probabilistic
neural network approach
- Authors: Peter Mlakar, Janko Mer\v{s}e, Jana Faganeli Pucer
- Abstract summary: We propose a novel, neural network-based method, which produces forecasts for all locations and lead times jointly.
We demonstrate the effectiveness of our method in the context of the EUPPBench benchmark.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Ensemble forecast post-processing is a necessary step in producing accurate
probabilistic forecasts. Conventional post-processing methods operate by
estimating the parameters of a parametric distribution, frequently on a
per-location or per-lead-time basis. We propose a novel, neural network-based
method, which produces forecasts for all locations and lead times, jointly. To
relax the distributional assumption of many post-processing methods, our
approach incorporates normalizing flows as flexible parametric distribution
estimators. This enables us to model varying forecast distributions in a
mathematically exact way. We demonstrate the effectiveness of our method in the
context of the EUPPBench benchmark, where we conduct temperature forecast
post-processing for stations in a sub-region of western Europe. We show that
our novel method exhibits state-of-the-art performance on the benchmark,
outclassing our previous, well-performing entry. Additionally, by providing a
detailed comparison of three variants of our novel post-processing method, we
elucidate the reasons why our method outperforms per-lead-time-based approaches
and approaches with distributional assumptions.
Related papers
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
We propose a new approach for propagating stable probability distributions through neural networks.
Our method is based on local linearization, which we show to be an optimal approximation in terms of total variation distance for the ReLU non-linearity.
arXiv Detail & Related papers (2024-02-13T09:40:19Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Postprocessing of Ensemble Weather Forecasts Using Permutation-invariant
Neural Networks [0.0]
We propose networks that treat forecast ensembles as a set of unordered member forecasts.
We evaluate the quality of the obtained forecast distributions in terms of calibration and sharpness.
Our results suggest that most of the relevant information is contained in a few ensemble-internal degrees of freedom.
arXiv Detail & Related papers (2023-09-08T17:20:51Z) - Unsupervised Sampling Promoting for Stochastic Human Trajectory
Prediction [10.717921532244613]
We propose a novel method, called BOsampler, to adaptively mine potential paths with Bayesian optimization in an unsupervised manner.
Specifically, we model the trajectory sampling as a Gaussian process and construct an acquisition function to measure the potential sampling value.
This acquisition function applies the original distribution as prior and encourages exploring paths in the long-tail region.
arXiv Detail & Related papers (2023-04-09T19:15:14Z) - Sinkhorn-Flow: Predicting Probability Mass Flow in Dynamical Systems
Using Optimal Transport [89.61692654941106]
We propose a new approach to predicting such mass flow over time using optimal transport.
We apply our approach to the task of predicting how communities will evolve over time in social network settings.
arXiv Detail & Related papers (2023-03-14T07:25:44Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Long Range Probabilistic Forecasting in Time-Series using High Order
Statistics [19.12411040726229]
We present a novel probabilistic forecasting method that produces forecasts coherent in terms of base level and predicted aggregate statistics.
We show that our method improves forecast performance across both base level and unseen aggregates post inference on real datasets ranging three diverse domains.
arXiv Detail & Related papers (2021-11-05T11:10:35Z) - Machine learning methods for postprocessing ensemble forecasts of wind
gusts: A systematic comparison [0.0]
Postprocessing ensemble weather predictions to correct systematic errors has become a standard practice in research and operations.
Here, we provide a comprehensive review and systematic comparison of eight statistical and machine learning methods for probabilistic wind gust forecasting.
We propose a flexible framework of locally adaptive neural networks with different probabilistic forecast types as output.
arXiv Detail & Related papers (2021-06-17T14:03:29Z) - Probabilistic multivariate electricity price forecasting using implicit
generative ensemble post-processing [0.0]
We use a likelihood-free implicit generative model based on an ensemble of point forecasting models to generate multivariate electricity price scenarios.
Our ensemble post-processing method outperforms well-established model combination benchmarks.
As our method works on top of an ensemble of domain-specific expert models, it can readily be deployed to other forecasting tasks.
arXiv Detail & Related papers (2020-05-27T15:22:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.