論文の概要: Utilizing Remote Sensing to Analyze Land Usage and Rice Planting
Patterns
- arxiv url: http://arxiv.org/abs/2303.17670v1
- Date: Thu, 30 Mar 2023 19:20:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 16:04:39.416770
- Title: Utilizing Remote Sensing to Analyze Land Usage and Rice Planting
Patterns
- Title(参考訳): リモートセンシングによる土地利用と稲作パターンの分析
- Authors: Nicholas Milikich
- Abstract要約: 空間的なパターンが観察され 農夫が作物を植えることに 大きく依存しています
本稿では,米の生育の異なる段階を示すために,バリ島における水稲の斑点をカラーで示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The cooperative management of rice terraces in Bali reveals an interesting
phenomenon that stems from the feedback loop between human decisions and the
ecosystem process. In particular, spatial patterning is observed, which is
heavily reliant on the farmer's decision to plant crops as well as the response
from the physical environment like pest damage and water shortage. A recent
study proposed an evolutionary game theoretic model to infer particular power
laws governing this spatial patterning along the Bali region. In this paper, we
show a snapshot of rice patches in Bali with colors to indicate the different
stages of rice growth
- Abstract(参考訳): バリの米段丘の協調管理は、人間の決定と生態系プロセスの間のフィードバックループに由来する興味深い現象を明らかにした。
特に空間的なパターンが観察され、農夫が作物を植えることを決めたことと、害虫被害や水不足といった物理的環境からの反応に大きく依存している。
最近の研究では、バリ地域に沿った空間的パターンを規定する特定の権力法則を推測する進化ゲーム理論モデルが提案されている。
本稿では,米の生育の異なる段階を示す色付きバリの稲穂のスナップショットを示す。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - Artificial Immune System of Secure Face Recognition Against Adversarial Attacks [67.31542713498627]
昆虫生産には 最大限の可能性を実現するために 最適化が必要です
これは選択的育種による興味のある形質の改善が目的である。
このレビューは、様々な分野の知識と、動物の繁殖、定量的遺伝学、進化生物学、昆虫学のギャップを埋めるものである。
論文 参考訳(メタデータ) (2024-06-26T07:50:58Z) - Feasibility of machine learning-based rice yield prediction in India at
the district level using climate reanalysis data [0.0]
本研究の目的は,インドにおいて,機械学習による収穫予測モデルがハリフの季節米収量の予測に有効であるかどうかを検討することである。
この手法は、20年間の気候、衛星、米の収量に関する19の機械学習モデルを、インドの米生産地区247地域にわたって訓練することを含む。
その結果, 収量予測の精度は, サンプル外R2, MAE, MAPEそれぞれ0.82, 0.29, 0.16であった。
論文 参考訳(メタデータ) (2024-03-12T13:31:13Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - HarvestNet: A Dataset for Detecting Smallholder Farming Activity Using
Harvest Piles and Remote Sensing [50.4506590177605]
HarvestNetは、2020-2023年のエチオピアのティグレイとアムハラの農場の存在をマッピングするためのデータセットである。
本研究は,多くの小作システムの特徴ある収穫杭の検出に基づく新しい手法を提案する。
本研究は, 農作物のリモートセンシングが, 食品の安全地帯において, よりタイムリーかつ正確な農地評価に寄与することが示唆された。
論文 参考訳(メタデータ) (2023-08-23T11:03:28Z) - Towards Global Crop Maps with Transfer Learning [0.0]
ディープラーニングモデルは、大量の注釈付きデータを必要とします。
本研究では,大韓民国における水稲検出のための深層学習モデルをSentinel-1 VH-1時系列を用いて開発・訓練した。
本手法は,同じ作物の異なる地域での移動において優れた性能を示し,異なる地域での移動において,より有望な結果を示す。
論文 参考訳(メタデータ) (2022-11-09T09:17:42Z) - Pest presence prediction using interpretable machine learning [0.0]
コットン・ボルワーム(Cotton bollworm)は、綿花の収穫と品質を脅かす深刻な害虫である。
気象・気候・植生条件は、作物害虫の豊富性の鍵要因として特定されている。
論文 参考訳(メタデータ) (2022-05-16T14:40:03Z) - Towards assessing agricultural land suitability with causal machine
learning [0.0]
我々は,ベルギーのフランダース地域における作物の回転と景観作物の多様性が純生産性に及ぼす影響を因果機械学習を用いて推定する。
植生の多様性がNPPに悪影響を及ぼすのに対して, 作物の回転の影響は重要でないことが判明した。
論文 参考訳(メタデータ) (2022-04-27T14:13:47Z) - Potato Crop Stress Identification in Aerial Images using Deep
Learning-based Object Detection [60.83360138070649]
本稿では, 深層ニューラルネットワークを用いたジャガイモの空中画像解析手法を提案する。
主な目的は、植物レベルでの健康作物とストレス作物の自動空間認識を実証することである。
実験により、フィールド画像中の健康植物とストレス植物を識別し、平均Dice係数0.74を達成できることを示した。
論文 参考訳(メタデータ) (2021-06-14T21:57:40Z) - Agriculture-Vision: A Large Aerial Image Database for Agricultural
Pattern Analysis [110.30849704592592]
本稿では,農業パターンのセマンティックセグメンテーションのための大規模空中農地画像データセットであるGarmry-Visionを提案する。
各画像はRGBと近赤外線(NIR)チャンネルで構成され、解像度は1ピクセルあたり10cmである。
農家にとって最も重要な9種類のフィールド異常パターンに注釈を付ける。
論文 参考訳(メタデータ) (2020-01-05T20:19:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。