論文の概要: Artificial Immune System of Secure Face Recognition Against Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2406.18144v1
- Date: Wed, 26 Jun 2024 07:50:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 14:18:49.873788
- Title: Artificial Immune System of Secure Face Recognition Against Adversarial Attacks
- Title(参考訳): 対人攻撃に対する安全な顔認識のための人工免疫システム
- Authors: Min Ren, Yunlong Wang, Yuhao Zhu, Yongzhen Huang, Zhenan Sun, Qi Li, Tieniu Tan,
- Abstract要約: 昆虫生産には 最大限の可能性を実現するために 最適化が必要です
これは選択的育種による興味のある形質の改善が目的である。
このレビューは、様々な分野の知識と、動物の繁殖、定量的遺伝学、進化生物学、昆虫学のギャップを埋めるものである。
- 参考スコア(独自算出の注目度): 67.31542713498627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Insect production for food and feed presents a promising supplement to ensure food safety and address the adverse impacts of agriculture on climate and environment in the future. However, optimisation is required for insect production to realise its full potential. This can be by targeted improvement of traits of interest through selective breeding, an approach which has so far been underexplored and underutilised in insect farming. Here we present a comprehensive review of the selective breeding framework in the context of insect production. We systematically evaluate adjustments of selective breeding techniques to the realm of insects and highlight the essential components integral to the breeding process. The discussion covers every step of a conventional breeding scheme, such as formulation of breeding objectives, phenotyping, estimation of genetic parameters and breeding values, selection of appropriate breeding strategies, and mitigation of issues associated with genetic diversity depletion and inbreeding. This review combines knowledge from diverse disciplines, bridging the gap between animal breeding, quantitative genetics, evolutionary biology, and entomology, offering an integrated view of the insect breeding research area and uniting knowledge which has previously remained scattered across diverse fields of expertise.
- Abstract(参考訳): 食料と飼料の昆虫生産は、食料の安全性を確保し、将来の気候と環境に対する農業の有害な影響に対処するための有望なサプリメントを提供する。
しかし、昆虫生産においてその潜在能力を最大限に発揮するためには最適化が必要である。
これは、選択的な育種を通じて興味のある特性を目標にすることによるものであり、これはこれまで昆虫栽培において過小評価され、利用されていないアプローチである。
ここでは、昆虫生産の文脈における選択的育種の枠組みを概観する。
我々は,選択的育種法を昆虫の領域に適応させ,育種過程に不可欠な成分を明らかにすることを体系的に評価した。
この議論は、育種目的の定式化、表現型化、遺伝的パラメータと育種価値の推定、適切な育種戦略の選択、遺伝的多様性の枯渇と育種に関連する問題の緩和など、従来の育種計画のすべてのステップをカバーしている。
動物育種、定量的遺伝学、進化生物学、昆虫学のギャップを埋め、昆虫育種研究領域の統合的な展望を提供し、これまで様々な専門分野に散らばっていた知識を統一する。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - InsectMamba: Insect Pest Classification with State Space Model [8.470757741028661]
InsectMambaは、ステートスペースモデル(SSM)、畳み込みニューラルネットワーク(CNN)、マルチヘッド自己認識機構(MSA)、マルチレイヤパーセプトロン(MLP)をMix-SSMブロックに統合する新しいアプローチである。
5種類の害虫分類データセットの強い競争相手に対して評価された。
論文 参考訳(メタデータ) (2024-04-04T17:34:21Z) - Causal machine learning for single-cell genomics [94.28105176231739]
単細胞ゲノミクスへの機械学習技術の応用とその課題について論じる。
まず, 単一細胞生物学における現在の因果的アプローチの基盤となるモデルについて述べる。
次に、単一セルデータへの因果的アプローチの適用におけるオープンな問題を特定する。
論文 参考訳(メタデータ) (2023-10-23T13:35:24Z) - AMaizeD: An End to End Pipeline for Automatic Maize Disease Detection [0.0]
AMaizeDは、ドローンから得られたマルチスペクトル画像を用いて、トウモロコシの作物の病気を早期に検出する自動化フレームワークである。
提案するフレームワークは,コンボリューションニューラルネットワーク(CNN)を特徴抽出器とセグメンテーション技術に組み合わせて,トウモロコシの植物とその関連疾患を同定する。
論文 参考訳(メタデータ) (2023-07-23T19:58:40Z) - Deep learning powered real-time identification of insects using citizen
science data [17.13608307250744]
InsectNetは、侵入した種を識別し、きめ細かい昆虫種を識別し、挑戦的な背景において効果的に働く。
また、不確実な場合には予測を控え、シームレスな人間の介入を助長し、実用的で信頼できるツールにもなれる。
論文 参考訳(メタデータ) (2023-06-04T23:56:53Z) - Empowering Agrifood System with Artificial Intelligence: A Survey of the Progress, Challenges and Opportunities [86.89427012495457]
我々は、AI技術がアグリフードシステムをどう変え、現代のアグリフード産業に貢献するかをレビューする。
本稿では,農業,畜産,漁業において,アグリフードシステムにおけるAI手法の進歩について概説する。
我々は、AIで現代のアグリフードシステムを変革するための潜在的な課題と有望な研究機会を強調します。
論文 参考訳(メタデータ) (2023-05-03T05:16:54Z) - Semantic Image Segmentation with Deep Learning for Vine Leaf Phenotyping [59.0626764544669]
本研究では,ブドウの葉のイメージを意味的にセグメント化するためにDeep Learning法を用いて,葉の表現型自動検出システムを開発した。
私たちの研究は、成長や開発のような動的な特性を捉え定量化できる植物ライフサイクルのモニタリングに寄与します。
論文 参考訳(メタデータ) (2022-10-24T14:37:09Z) - Spatial Monitoring and Insect Behavioural Analysis Using Computer Vision
for Precision Pollination [6.2997667081978825]
昆虫は作物の最も重要な世界的な受粉者であり、自然生態系の持続可能性を維持する上で重要な役割を担っている。
現在のコンピュータビジョンは、複雑な屋外環境における昆虫追跡を空間的に制限している。
本稿では,昆虫数計測,昆虫の動き追跡,行動解析,受粉予測のためのマーカーレスデータキャプチャーシステムを紹介する。
論文 参考訳(メタデータ) (2022-05-10T05:11:28Z) - Weakly Supervised Learning Guided by Activation Mapping Applied to a
Novel Citrus Pest Benchmark [6.239768930024569]
統合害虫管理(Integrated pest Management)は、シトラス作物の害虫や病気による被害を予防・緩和するために最も広く用いられるプロセスである。
我々は、画像に対する関心領域を自動的に選択するために、サリエンシマップによって導かれる弱教師付き学習プロセスを設計する。
2つの大規模データセットで行った実験から,農業分野における害虫の分類と病気の分類の問題に対して,本研究の結果は非常に有望であることが明らかとなった。
論文 参考訳(メタデータ) (2020-04-22T01:26:50Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。