FairGen: Towards Fair Graph Generation
- URL: http://arxiv.org/abs/2303.17743v3
- Date: Sat, 16 Dec 2023 22:42:42 GMT
- Title: FairGen: Towards Fair Graph Generation
- Authors: Lecheng Zheng, Dawei Zhou, Hanghang Tong, Jiejun Xu, Yada Zhu, Jingrui
He
- Abstract summary: We propose a fairness-aware graph generative model named FairGen.
Our model jointly trains a label-informed graph generation module and a fair representation learning module.
Experimental results on seven real-world data sets, including web-based graphs, demonstrate that FairGen obtains performance on par with state-of-the-art graph generative models.
- Score: 76.34239875010381
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There have been tremendous efforts over the past decades dedicated to the
generation of realistic graphs in a variety of domains, ranging from social
networks to computer networks, from gene regulatory networks to online
transaction networks. Despite the remarkable success, the vast majority of
these works are unsupervised in nature and are typically trained to minimize
the expected graph reconstruction loss, which would result in the
representation disparity issue in the generated graphs, i.e., the protected
groups (often minorities) contribute less to the objective and thus suffer from
systematically higher errors. In this paper, we aim to tailor graph generation
to downstream mining tasks by leveraging label information and user-preferred
parity constraints. In particular, we start from the investigation of
representation disparity in the context of graph generative models. To mitigate
the disparity, we propose a fairness-aware graph generative model named
FairGen. Our model jointly trains a label-informed graph generation module and
a fair representation learning module by progressively learning the behaviors
of the protected and unprotected groups, from the `easy' concepts to the `hard'
ones. In addition, we propose a generic context sampling strategy for graph
generative models, which is proven to be capable of fairly capturing the
contextual information of each group with a high probability. Experimental
results on seven real-world data sets, including web-based graphs, demonstrate
that FairGen (1) obtains performance on par with state-of-the-art graph
generative models across nine network properties, (2) mitigates the
representation disparity issues in the generated graphs, and (3) substantially
boosts the model performance by up to 17% in downstream tasks via data
augmentation.
Related papers
- Data Augmentation in Graph Neural Networks: The Role of Generated Synthetic Graphs [0.24999074238880487]
This study explores using generated graphs for data augmentation.
It compares the performance of combining generated graphs with real graphs, and examining the effect of different quantities of generated graphs on graph classification tasks.
Our results introduce a new approach to graph data augmentation, ensuring consistent labels and enhancing classification performance.
arXiv Detail & Related papers (2024-07-20T06:05:26Z) - Motif-Consistent Counterfactuals with Adversarial Refinement for Graph-Level Anomaly Detection [30.618065157205507]
We propose a novel approach, Motif-consistent Counterfactuals with Adversarial Refinement (MotifCAR) for graph-level anomaly detection.
The model combines the motif of one graph, the core subgraph containing the identification (category) information, and the contextual subgraph of another graph to produce a raw counterfactual graph.
MotifCAR can generate high-quality counterfactual graphs.
arXiv Detail & Related papers (2024-07-18T08:04:57Z) - Imbalanced Graph Classification with Multi-scale Oversampling Graph Neural Networks [25.12261412297796]
We introduce a novel multi-scale oversampling graph neural network (MOSGNN) that learns expressive minority graph representations.
It achieves this by jointly optimizing subgraph-level, graph-level, and pairwise-graph learning tasks.
Experiments on 16 imbalanced graph datasets show that MOSGNN i) significantly outperforms five state-of-the-art models.
arXiv Detail & Related papers (2024-05-08T09:16:54Z) - GraphRCG: Self-Conditioned Graph Generation [78.69810678803248]
We propose a novel self-conditioned graph generation framework designed to explicitly model graph distributions.
Our framework demonstrates superior performance over existing state-of-the-art graph generation methods in terms of graph quality and fidelity to training data.
arXiv Detail & Related papers (2024-03-02T02:28:20Z) - Learning Graph Structure from Convolutional Mixtures [119.45320143101381]
We propose a graph convolutional relationship between the observed and latent graphs, and formulate the graph learning task as a network inverse (deconvolution) problem.
In lieu of eigendecomposition-based spectral methods, we unroll and truncate proximal gradient iterations to arrive at a parameterized neural network architecture that we call a Graph Deconvolution Network (GDN)
GDNs can learn a distribution of graphs in a supervised fashion, perform link prediction or edge-weight regression tasks by adapting the loss function, and they are inherently inductive.
arXiv Detail & Related papers (2022-05-19T14:08:15Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Unbiased Graph Embedding with Biased Graph Observations [52.82841737832561]
We propose a principled new way for obtaining unbiased representations by learning from an underlying bias-free graph.
Based on this new perspective, we propose two complementary methods for uncovering such an underlying graph.
arXiv Detail & Related papers (2021-10-26T18:44:37Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Generating a Doppelganger Graph: Resembling but Distinct [5.618335078130568]
We propose an approach to generating a doppelganger graph that resembles a given one in many graph properties.
The approach is an orchestration of graph representation learning, generative adversarial networks, and graph realization algorithms.
arXiv Detail & Related papers (2021-01-23T22:08:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.