論文の概要: Joint Depth Estimation and Mixture of Rain Removal From a Single Image
- arxiv url: http://arxiv.org/abs/2303.17766v1
- Date: Fri, 31 Mar 2023 02:05:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-03 15:26:46.307571
- Title: Joint Depth Estimation and Mixture of Rain Removal From a Single Image
- Title(参考訳): 単一画像からの降雨量の同時推定と混合
- Authors: Yongzhen Wang, Xuefeng Yan, Yanbiao Niu, Lina Gong, Yanwen Guo,
Mingqiang Wei
- Abstract要約: そこで我々は,DeMore-Netと呼ばれる降雨の混合に対する効果的な画像デクリニングパラダイムを提案する。
本研究では,画像のデアライジング作業における正規化手法について検討し,DeMore-Netのデアライジング性能を向上させるためにHNB(Hybrid Normalization Block)を導入する。
- 参考スコア(独自算出の注目度): 24.009353523566162
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rainy weather significantly deteriorates the visibility of scene objects,
particularly when images are captured through outdoor camera lenses or
windshields. Through careful observation of numerous rainy photos, we have
found that the images are generally affected by various rainwater artifacts
such as raindrops, rain streaks, and rainy haze, which impact the image quality
from both near and far distances, resulting in a complex and intertwined
process of image degradation. However, current deraining techniques are limited
in their ability to address only one or two types of rainwater, which poses a
challenge in removing the mixture of rain (MOR). In this study, we propose an
effective image deraining paradigm for Mixture of rain REmoval, called
DEMore-Net, which takes full account of the MOR effect. Going beyond the
existing deraining wisdom, DEMore-Net is a joint learning paradigm that
integrates depth estimation and MOR removal tasks to achieve superior rain
removal. The depth information can offer additional meaningful guidance
information based on distance, thus better helping DEMore-Net remove different
types of rainwater. Moreover, this study explores normalization approaches in
image deraining tasks and introduces a new Hybrid Normalization Block (HNB) to
enhance the deraining performance of DEMore-Net. Extensive experiments
conducted on synthetic datasets and real-world MOR photos fully validate the
superiority of the proposed DEMore-Net. Code is available at
https://github.com/yz-wang/DEMore-Net.
- Abstract(参考訳): 雨天は、特に屋外カメラレンズやフロントガラスを通して画像が撮影される場合、シーンオブジェクトの視界を著しく悪化させる。
多くの雨の写真の注意深く観察することで、画像は一般に雨滴、雨のストリーク、雨のヘイズなどの様々な雨水アーチファクトに影響され、近距離から遠方までの画像品質に影響を与え、複雑で絡み合った画像劣化の過程をもたらすことが判明した。
しかし、現在の排水技術は、雨水の1つか2つの種類にしか対処できないため、雨の混合物(MOR)の除去が困難である。
本研究では,MOR効果をフルに考慮したDreMore-Netと呼ばれる,降雨の混合に対する効果的な画像デクリニングパラダイムを提案する。
demore-netは、雨の除去を達成するために、深さの推定とモー除去タスクを統合する共同学習パラダイムである。
奥行き情報は、距離に基づく意味のあるガイダンス情報を提供するので、demore-netがさまざまな種類の雨水を取り除くのに役立つ。
さらに,画像のデアライジング作業における正規化手法について検討し,DeMore-Netのデアライジング性能を向上させるためにHNB(Hybrid Normalization Block)を導入する。
合成データセットと実世界のMOR写真による大規模な実験は、提案したDEMore-Netの優位性を十分に検証している。
コードはhttps://github.com/yz-wang/DEMore-Netで入手できる。
関連論文リスト
- Image Deraining via Self-supervised Reinforcement Learning [15.41116945679692]
自己監督型強化学習(RL)による雨害除去による雨像の復元を目指す。
入力雨画像から辞書学習により雨のストリーク画素を抽出し,複数の塗料を塗布して雨を徐々に除去する。
いくつかのベンチマーク画像デライニングデータセットの実験結果から、提案したSRL-Derainは、最先端の少数ショットと自己監督型デライニングおよびデノイング手法に対して好適に機能することが示された。
論文 参考訳(メタデータ) (2024-03-27T05:52:39Z) - NiteDR: Nighttime Image De-Raining with Cross-View Sensor Cooperative Learning for Dynamic Driving Scenes [49.92839157944134]
夜間の運転シーンでは、不十分で不均一な照明が暗闇の中でシーンを遮蔽し、画質と可視性が低下する。
雨天時の運転シーンに適した画像デライニング・フレームワークを開発した。
雨の人工物を取り除き、風景表現を豊かにし、有用な情報を復元することを目的としている。
論文 参考訳(メタデータ) (2024-02-28T09:02:33Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
雨のストリークは撮影画像の可視性を著しく低下させる。
既存のディープラーニングベースの画像デライニング手法では、手作業で構築されたネットワークを使用して、雨の降った画像から明確な画像への直接投影を学習する。
本稿では,雨天画像と澄んだ画像との相関関係を考察した,対照的な学習に基づく画像デライニング手法を提案する。
論文 参考訳(メタデータ) (2023-05-29T13:51:41Z) - Dual Degradation Representation for Joint Deraining and Low-Light Enhancement in the Dark [57.85378202032541]
暗闇の中での雨は、自律運転や監視システム、夜間写真など、現実世界のアプリケーションをデプロイする上で大きな課題となる。
既存の低照度化や除染法は、低照度を明るくし、同時に雨を取り除くのに苦労する。
L$2$RIRNetと呼ばれるエンド・ツー・エンドのモデルを導入する。
論文 参考訳(メタデータ) (2023-05-06T10:17:42Z) - Single Image Deraining via Rain-Steaks Aware Deep Convolutional Neural
Network [16.866000078306815]
雨天画像から高周波情報を抽出するために、改良された重み付きガイド画像フィルタ(iWGIF)を提案する。
高周波情報は主にレインステーキとノイズを含み、レインステーキが深い畳み込みニューラルネットワーク(RSADCNN)を認識してレインステーキに注意を払うように誘導することができる。
論文 参考訳(メタデータ) (2022-09-16T09:16:03Z) - Semi-MoreGAN: A New Semi-supervised Generative Adversarial Network for
Mixture of Rain Removal [18.04268933542476]
降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水・降水)
セミモレGANは、4つの重要なモジュールで構成されている: (I) 正確な深度推定を提供する新しい注意深度予測ネットワーク、 (ii) 詳細な画像コンテキスト特徴を生成するためによく設計された詳細残差ブロックで構成されたコンテキスト特徴予測ネットワーク、 (iii) ピラミッド深度誘導非局所ネットワークにより画像コンテキストを深度情報と有効に統合し、最終雨量のない画像を生成する、 (iv) モデルに制限を加えるための包括的な半教師付き損失関数。
論文 参考訳(メタデータ) (2022-04-28T11:35:26Z) - UnfairGAN: An Enhanced Generative Adversarial Network for Raindrop
Removal from A Single Image [8.642603456626391]
UnfairGANは、エッジや雨量推定といった事前の高レベル情報を活用することで、デライニング性能を向上させることができる、改良された生成的敵ネットワークである。
提案手法は, 定量的な計測値と視覚的品質に関する降雨量について, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-11T18:02:43Z) - Dual Attention-in-Attention Model for Joint Rain Streak and Raindrop
Removal [103.4067418083549]
降雨量と降雨量の両方を同時に除去する2つのDAMを含むDual Attention-in-Attention Model (DAiAM)を提案する。
提案手法は,降雨量と降雨量とを同時に除去できるだけでなく,両タスクの最先端性能も達成できる。
論文 参考訳(メタデータ) (2021-03-12T03:00:33Z) - From Rain Generation to Rain Removal [67.71728610434698]
雨層を生成物としてパラメータ化した雨画像のためのベイズ生成モデルを構築した。
降雨画像の統計的分布を推定するために,変分推論の枠組みを用いる。
総合的な実験により,提案モデルが複雑な降雨分布を忠実に抽出できることが確認された。
論文 参考訳(メタデータ) (2020-08-08T18:56:51Z) - MBA-RainGAN: Multi-branch Attention Generative Adversarial Network for
Mixture of Rain Removal from Single Images [24.60495609529114]
豪雨の日、ガラスを通して画像が撮影されるとき、雨はシーンオブジェクトの視界をひどく損なう。
1) 雨は雨滴, 雨煙, 雨雲の混合であり, 2) カメラからの深さが物体の視界の度合いを決定する, 3) ガラス上の雨滴は画像空間全体の視界にランダムに影響を及ぼす, 興味深い3つの現象を観察する。
論文 参考訳(メタデータ) (2020-05-21T11:44:21Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
本研究は,本質的な降雨構造を有するネットワークの出力残余を強制することで,新たなネットワークアーキテクチャを提案する。
このような構造的残差設定は、ネットワークによって抽出された雨層が、一般的な雨害の以前の知識に微妙に従うことを保証している。
論文 参考訳(メタデータ) (2020-05-19T05:52:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。