論文の概要: Unsupervised Network for Single Image Raindrop Removal
- arxiv url: http://arxiv.org/abs/2412.03019v1
- Date: Wed, 04 Dec 2024 04:10:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-05 15:08:21.838115
- Title: Unsupervised Network for Single Image Raindrop Removal
- Title(参考訳): 単一画像雨滴除去のための教師なしネットワーク
- Authors: Huijiao Wang, Shenghao Zhao, Lei Yu, Xulei Yang,
- Abstract要約: 本研究では,教師なし学習に基づく雨滴除去のためのディープニューラルネットワークを提案する。
提案モデルでは,サイクルネットワークアーキテクチャに基づく層分離を行う。
雨滴ベンチマークデータセットの実験により,提案手法の有効性が示された。
- 参考スコア(独自算出の注目度): 4.982370044801629
- License:
- Abstract: Image quality degradation caused by raindrops is one of the most important but challenging problems that reduce the performance of vision systems. Most existing raindrop removal algorithms are based on a supervised learning method using pairwise images, which are hard to obtain in real-world applications. This study proposes a deep neural network for raindrop removal based on unsupervised learning, which only requires two unpaired image sets with and without raindrops. Our proposed model performs layer separation based on cycle network architecture, which aims to separate a rainy image into a raindrop layer, a transparency mask, and a clean background layer. The clean background layer is the target raindrop removal result, while the transparency mask indicates the spatial locations of the raindrops. In addition, the proposed model applies a feedback mechanism to benefit layer separation by refining low-level representation with high-level information. i.e., the output of the previous iteration is used as input for the next iteration, together with the input image with raindrops. As a result, raindrops could be gradually removed through this feedback manner. Extensive experiments on raindrop benchmark datasets demonstrate the effectiveness of the proposed method on quantitative metrics and visual quality.
- Abstract(参考訳): 雨滴による画質劣化は、視覚システムの性能を低下させる最も重要かつ困難な問題の1つである。
既存の雨滴除去アルゴリズムの多くは、ペア画像を用いた教師あり学習法に基づいており、現実のアプリケーションでは入手が困難である。
本研究では,教師なし学習に基づく雨滴除去のための深層ニューラルネットワークを提案する。
提案モデルでは,降雨画像を雨滴層,透過マスク,クリーン背景層に分離することを目的として,サイクルネットワークアーキテクチャに基づく層分離を行う。
クリーン背景層は目標雨滴除去結果であり、透明マスクは雨滴の空間的位置を示す。
さらに,提案モデルでは,低レベル表現を高レベル情報で精錬することで,層分離の恩恵を受けるためのフィードバック機構を適用している。
すなわち、前のイテレーションの出力は次のイテレーションの入力として、レインドロップの入力画像と共に使用される。
その結果、雨滴はこのフィードバックによって徐々に除去される。
雨滴ベンチマークデータセットの大規模な実験は,提案手法が定量的な測定値と視覚的品質に与える影響を実証している。
関連論文リスト
- RainyScape: Unsupervised Rainy Scene Reconstruction using Decoupled Neural Rendering [50.14860376758962]
多視点降雨画像の集合からクリーンなシーンを再構築するための教師なしフレームワークであるRainyScapeを提案する。
ニューラルネットワークのスペクトルバイアス特性に基づいて、まずニューラルネットワークのレンダリングパイプラインを最適化し、低周波シーン表現を得る。
我々は2つのモジュールを協調的に最適化し,適応的指向性勾配に基づく再構成損失によって駆動する。
論文 参考訳(メタデータ) (2024-04-17T14:07:22Z) - Contrastive Learning Based Recursive Dynamic Multi-Scale Network for
Image Deraining [47.764883957379745]
雨のストリークは撮影画像の可視性を著しく低下させる。
既存のディープラーニングベースの画像デライニング手法では、手作業で構築されたネットワークを使用して、雨の降った画像から明確な画像への直接投影を学習する。
本稿では,雨天画像と澄んだ画像との相関関係を考察した,対照的な学習に基づく画像デライニング手法を提案する。
論文 参考訳(メタデータ) (2023-05-29T13:51:41Z) - Single Image Deraining via Feature-based Deep Convolutional Neural
Network [13.39233717329633]
データ駆動型アプローチとモデルベースアプローチを組み合わせた,単一画像デラミニングアルゴリズムを提案する。
実験の結果,提案アルゴリズムは質的,定量的両面で最先端の手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-05-03T13:12:51Z) - Feature-Aligned Video Raindrop Removal with Temporal Constraints [68.49161092870224]
雨滴除去は、単一画像とビデオの両方において困難である。
熱帯雨林とは異なり、雨滴は複数のフレームで同じ地域を覆う傾向にある。
本手法では,2段階の降雨量除去手法を用いる。
論文 参考訳(メタデータ) (2022-05-29T05:42:14Z) - UnfairGAN: An Enhanced Generative Adversarial Network for Raindrop
Removal from A Single Image [8.642603456626391]
UnfairGANは、エッジや雨量推定といった事前の高レベル情報を活用することで、デライニング性能を向上させることができる、改良された生成的敵ネットワークである。
提案手法は, 定量的な計測値と視覚的品質に関する降雨量について, 従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-10-11T18:02:43Z) - RCDNet: An Interpretable Rain Convolutional Dictionary Network for
Single Image Deraining [49.99207211126791]
雨畳み込み辞書ネットワーク(RCDNet)と呼ばれる,新しい深層アーキテクチャを具体的に構築する。
RCDNetは雨害の本質的な先行を埋め込んでおり、明確な解釈性を持っている。
このような解釈可能なネットワークをエンドツーエンドにトレーニングすることにより、関連するすべてのレインカーネルと近位演算子を自動的に抽出することができる。
論文 参考訳(メタデータ) (2021-07-14T16:08:11Z) - Beyond Monocular Deraining: Parallel Stereo Deraining Network Via
Semantic Prior [103.49307603952144]
ほとんどの既存の脱雨アルゴリズムは単一の入力画像のみを使用し、クリーンな画像の復元を目指しています。
本稿では,ステレオ画像とセマンティック情報の両方を利用するPaired Rain Removal Network(PRRNet)を提案する。
単分子および新たに提案したステレオ降雨データセットの両方の実験により,提案手法が最先端の性能を達成することを示す。
論文 参考訳(メタデータ) (2021-05-09T04:15:10Z) - Structural Residual Learning for Single Image Rain Removal [48.87977695398587]
本研究は,本質的な降雨構造を有するネットワークの出力残余を強制することで,新たなネットワークアーキテクチャを提案する。
このような構造的残差設定は、ネットワークによって抽出された雨層が、一般的な雨害の以前の知識に微妙に従うことを保証している。
論文 参考訳(メタデータ) (2020-05-19T05:52:13Z) - Physical Model Guided Deep Image Deraining [10.14977592107907]
降雨画像の劣化により、多くのコンピュータビジョンシステムが動作しないため、単一画像のデライン化は緊急の課題である。
本研究では, 物理モデルを用いた単一画像デライニングのための新しいネットワークを提案する。
論文 参考訳(メタデータ) (2020-03-30T07:08:13Z) - Multi-Task Learning Enhanced Single Image De-Raining [9.207797392774465]
画像の降雨除去はコンピュータビジョンにおいて重要な課題であり、より多くの人々の注目を集めている。
本稿では,1枚の画像からレインストリークの視覚効果を除去する非自明な問題に対処する。
本手法は,降雨除去のためのマルチタスク回帰モデルにおいて,様々な意味制約タスクを組み合わさったものである。
論文 参考訳(メタデータ) (2020-03-21T16:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。