論文の概要: Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer
- arxiv url: http://arxiv.org/abs/2303.17783v5
- Date: Wed, 20 Mar 2024 16:21:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-21 23:07:03.782602
- Title: Uncertainty-Aware Source-Free Adaptive Image Super-Resolution with Wavelet Augmentation Transformer
- Title(参考訳): Wavelet Augmentation Transformer を用いた不確実性フリー適応画像超解像
- Authors: Yuang Ai, Xiaoqiang Zhou, Huaibo Huang, Lei Zhang, Ran He,
- Abstract要約: Unsupervised Domain Adaptation (UDA)は、現実世界の超解像(SR)における領域ギャップ問題に効果的に対処できる
本稿では,画像SR(SODA-SR)のためのSOurce-free Domain Adaptationフレームワークを提案する。
- 参考スコア(独自算出の注目度): 60.31021888394358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised Domain Adaptation (UDA) can effectively address domain gap issues in real-world image Super-Resolution (SR) by accessing both the source and target data. Considering privacy policies or transmission restrictions of source data in practical scenarios, we propose a SOurce-free Domain Adaptation framework for image SR (SODA-SR) to address this issue, i.e., adapt a source-trained model to a target domain with only unlabeled target data. SODA-SR leverages the source-trained model to generate refined pseudo-labels for teacher-student learning. To better utilize pseudo-labels, we propose a novel wavelet-based augmentation method, named Wavelet Augmentation Transformer (WAT), which can be flexibly incorporated with existing networks, to implicitly produce useful augmented data. WAT learns low-frequency information of varying levels across diverse samples, which is aggregated efficiently via deformable attention. Furthermore, an uncertainty-aware self-training mechanism is proposed to improve the accuracy of pseudo-labels, with inaccurate predictions being rectified by uncertainty estimation. To acquire better SR results and avoid overfitting pseudo-labels, several regularization losses are proposed to constrain target LR and SR images in the frequency domain. Experiments show that without accessing source data, SODA-SR outperforms state-of-the-art UDA methods in both synthetic$\rightarrow$real and real$\rightarrow$real adaptation settings, and is not constrained by specific network architectures.
- Abstract(参考訳): Unsupervised Domain Adaptation (UDA)は、ソースデータとターゲットデータの両方にアクセスすることで、実世界の画像スーパーリゾリューション(SR)におけるドメインギャップ問題に効果的に対処することができる。
実際のシナリオにおいて、プライバシポリシやソースデータの送信制限を考慮して、この問題を解決するために、画像SR(SODA-SR)のためのSOurce-free Domain Adaptationフレームワークを提案する。
SODA-SRはソース学習モデルを利用して、教師学習のための洗練された擬似ラベルを生成する。
疑似ラベルをよりよく活用するために、既存のネットワークに柔軟に組み込むことができるウェーブレット拡張変換器(WAT)という新しいウェーブレットベースの拡張手法を提案し、有用な拡張データを暗黙的に生成する。
WATは、変形可能な注意によって効率的に集約される様々なサンプルの様々なレベルの低周波情報を学習する。
さらに、疑似ラベルの精度を向上させるために、不確実性を考慮した自己学習機構を提案し、不確実性推定によって不正確な予測が修正されている。
より優れたSR結果を取得し、擬似ラベルの過適合を避けるため、周波数領域におけるターゲットLRとSR画像の制約にいくつかの正規化損失が提案される。
実験によると、ソースデータにアクセスせずに、SODA-SRは合成$\rightarrow$realとreal$\rightarrow$realの両方で最先端のUDAメソッドより優れており、特定のネットワークアーキテクチャでは制約されない。
関連論文リスト
- Progressive Multi-Level Alignments for Semi-Supervised Domain Adaptation SAR Target Recognition Using Simulated Data [3.1951121258423334]
我々は、ソースドメインインスタンスを対応するプロトタイプに近づけるために、インスタンス-プロトタイプアライメント(AIPA)戦略を開発する。
また、ソースドメインインスタンスを対応するプロトタイプに近づけるための、インスタンス-プロトタイプアライメント(AIPA)戦略も開発しています。
論文 参考訳(メタデータ) (2024-11-07T13:53:13Z) - Confidence Attention and Generalization Enhanced Distillation for
Continuous Video Domain Adaptation [62.458968086881555]
連続ビデオドメイン適応(CVDA、Continuous Video Domain Adaptation)は、ソースモデルが個々の変更対象ドメインに適応する必要があるシナリオである。
CVDAの課題に対処するため,遺伝子組み換え型自己知識解離(CART)を用いた信頼性保証ネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-18T16:40:10Z) - MAPS: A Noise-Robust Progressive Learning Approach for Source-Free
Domain Adaptive Keypoint Detection [76.97324120775475]
クロスドメインキーポイント検出方法は、常に適応中にソースデータにアクセスする必要がある。
本稿では、ターゲット領域に十分に訓練されたソースモデルのみを提供する、ソースフリーなドメイン適応キーポイント検出について考察する。
論文 参考訳(メタデータ) (2023-02-09T12:06:08Z) - Boosting Cross-Domain Speech Recognition with Self-Supervision [35.01508881708751]
自動音声認識(ASR)のクロスドメイン性能は,トレーニングとテストのミスマッチにより著しく損なわれる可能性がある。
従来, 自己監督学習 (SSL) や擬似ラベル学習 (PL) は, 未ラベルデータの自己監督を利用してUDAに有効であることが示された。
この研究は、事前学習および微調整のパラダイムにおいて、ラベルなしデータを完全に活用する体系的なUDAフレームワークを提案する。
論文 参考訳(メタデータ) (2022-06-20T14:02:53Z) - Balancing Discriminability and Transferability for Source-Free Domain
Adaptation [55.143687986324935]
従来のドメイン適応(DA)技術は、ドメイン不変表現を学習することでドメイン転送性を改善することを目的としている。
ラベル付けされたソースとラベル付けされていないターゲットへの同時アクセス要件は、ソースフリーなDA設定に適さない。
そこで本研究では,原文と翻訳サンプルの混在が識別可能性と伝達可能性のトレードオフを促進することを示す新しい知見を導出する。
論文 参考訳(メタデータ) (2022-06-16T09:06:22Z) - Instance Relation Graph Guided Source-Free Domain Adaptive Object
Detection [79.89082006155135]
教師なしドメイン適応(Unsupervised Domain Adaptation, UDA)は、ドメインシフトの問題に取り組むための効果的なアプローチである。
UDAメソッドは、ターゲットドメインの一般化を改善するために、ソースとターゲット表現を整列させようとする。
Source-Free Adaptation Domain (SFDA)設定は、ソースデータへのアクセスを必要とせずに、ターゲットドメインに対してソーストレーニングされたモデルを適用することで、これらの懸念を軽減することを目的としている。
論文 参考訳(メタデータ) (2022-03-29T17:50:43Z) - Source-Free Domain Adaptation for Semantic Segmentation [11.722728148523366]
Unsupervised Domain Adaptation(UDA)は、セマンティックセグメンテーションのための畳み込みニューラルネットワークベースのアプローチがピクセルレベルの注釈付きデータに大きく依存するという課題に取り組むことができる。
そこで本稿では,十分に訓練されたソースモデルとラベルなしのターゲットドメインデータセットのみを適用可能な,意味セグメンテーションのためのソースフリーなドメイン適応フレームワークsfdaを提案する。
論文 参考訳(メタデータ) (2021-03-30T14:14:29Z) - Adaptive Pseudo-Label Refinement by Negative Ensemble Learning for
Source-Free Unsupervised Domain Adaptation [35.728603077621564]
既存のUnsupervised Domain Adaptation (UDA)メソッドは、トレーニング中にソースとターゲットのドメインデータを同時に利用できると仮定する。
訓練済みのソースモデルは、よく知られたドメインシフトの問題により、ターゲットに対して性能が悪くても、常に利用可能であると考えられている。
適応型ノイズフィルタリングと擬似ラベル改良に取り組むための統一手法を提案する。
論文 参考訳(メタデータ) (2021-03-29T22:18:34Z) - Unsupervised Domain Adaptation for Speech Recognition via Uncertainty
Driven Self-Training [55.824641135682725]
WSJ をソースドメインとし,TED-Lium 3 とSWITCHBOARD を併用したドメイン適応実験を行った。
論文 参考訳(メタデータ) (2020-11-26T18:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。