Never a Dull Moment: Distributional Properties as a Baseline for
Time-Series Classification
- URL: http://arxiv.org/abs/2303.17809v1
- Date: Fri, 31 Mar 2023 05:55:54 GMT
- Title: Never a Dull Moment: Distributional Properties as a Baseline for
Time-Series Classification
- Authors: Trent Henderson, Annie G. Bryant, Ben D. Fulcher
- Abstract summary: We evaluate the performance of an extremely simple classification approach.
We find that a simple linear model based on the mean and standard deviation performs better at classifying individuals with schizophrenia.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The variety of complex algorithmic approaches for tackling time-series
classification problems has grown considerably over the past decades, including
the development of sophisticated but challenging-to-interpret
deep-learning-based methods. But without comparison to simpler methods it can
be difficult to determine when such complexity is required to obtain strong
performance on a given problem. Here we evaluate the performance of an
extremely simple classification approach -- a linear classifier in the space of
two simple features that ignore the sequential ordering of the data: the mean
and standard deviation of time-series values. Across a large repository of 128
univariate time-series classification problems, this simple distributional
moment-based approach outperformed chance on 69 problems, and reached 100%
accuracy on two problems. With a neuroimaging time-series case study, we find
that a simple linear model based on the mean and standard deviation performs
better at classifying individuals with schizophrenia than a model that
additionally includes features of the time-series dynamics. Comparing the
performance of simple distributional features of a time series provides
important context for interpreting the performance of complex time-series
classification models, which may not always be required to obtain high
accuracy.
Related papers
- Learning K-U-Net with constant complexity: An Application to time series forecasting [1.8816077341295625]
Training deep models for time series forecasting is a critical task with an inherent challenge of time complexity.
We introduce a new exponentially weighted gradient descent algorithm designed to achieve constant time complexity in deep learning models.
arXiv Detail & Related papers (2024-10-03T12:35:17Z) - Concrete Dense Network for Long-Sequence Time Series Clustering [4.307648859471193]
Time series clustering is fundamental in data analysis for discovering temporal patterns.
Deep temporal clustering methods have been trying to integrate the canonical k-means into end-to-end training of neural networks.
LoSTer is a novel dense autoencoder architecture for the long-sequence time series clustering problem.
arXiv Detail & Related papers (2024-05-08T12:31:35Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
We propose a compound batch normalization method based on a Gaussian mixture.
It can model the feature space more comprehensively and reduce the dominance of head classes.
The proposed method outperforms existing methods on long-tailed image classification.
arXiv Detail & Related papers (2022-12-02T07:31:39Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Novelty Detection in Sequential Data by Informed Clustering and Modeling [8.108571247838206]
Novelties can be detected by modeling normal sequences and measuring the deviations of a new sequence from the model predictions.
In this paper, we adapt a state-of-the-art visual analytics tool for discrete sequence clustering to obtain informed clusters from domain experts.
Our approach outperforms state-of-the-art novelty detection methods for discrete sequences in three real-world application scenarios.
arXiv Detail & Related papers (2021-03-05T20:58:24Z) - Contrastive learning of strong-mixing continuous-time stochastic
processes [53.82893653745542]
Contrastive learning is a family of self-supervised methods where a model is trained to solve a classification task constructed from unlabeled data.
We show that a properly constructed contrastive learning task can be used to estimate the transition kernel for small-to-mid-range intervals in the diffusion case.
arXiv Detail & Related papers (2021-03-03T23:06:47Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Interpretable Time Series Classification using Linear Models and
Multi-resolution Multi-domain Symbolic Representations [6.6147550436077776]
We propose new time series classification algorithms to address gaps in current approaches.
Our approach is based on symbolic representations of time series, efficient sequence mining algorithms and linear classification models.
Our models are as accurate as deep learning models but are more efficient regarding running time and memory, can work with variable-length time series and can be interpreted by highlighting the discriminative symbolic features on the original time series.
arXiv Detail & Related papers (2020-05-31T15:32:08Z) - Complexity Measures and Features for Times Series classification [0.0]
We propose a set of characteristics capable of extracting information on the structure of the time series to face time series classification problems.
The experimental results of our proposal show no statistically significant differences from the second and third best models of the state-of-the-art.
arXiv Detail & Related papers (2020-02-27T11:08:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.