Structural Classification of Locally Stationary Time Series Based on Second-order Characteristics
- URL: http://arxiv.org/abs/2507.04237v2
- Date: Thu, 10 Jul 2025 03:23:01 GMT
- Title: Structural Classification of Locally Stationary Time Series Based on Second-order Characteristics
- Authors: Chen Qian, Xiucai Ding, Lexin Li,
- Abstract summary: We present a numerically efficient, practically competitive, and theoretically rigorous classification method for distinguishing between two classes of locally stationary time series.<n>Our approach builds on the autoregressive approximation for locally stationary time series, combined with an ensemble aggregation and a distance-based threshold for classification.<n>It imposes no requirement on the training sample size, and is shown to achieve zero misclassification error rate.
- Score: 18.368110934638207
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series classification is crucial for numerous scientific and engineering applications. In this article, we present a numerically efficient, practically competitive, and theoretically rigorous classification method for distinguishing between two classes of locally stationary time series based on their time-domain, second-order characteristics. Our approach builds on the autoregressive approximation for locally stationary time series, combined with an ensemble aggregation and a distance-based threshold for classification. It imposes no requirement on the training sample size, and is shown to achieve zero misclassification error rate asymptotically when the underlying time series differ only mildly in their second-order characteristics. The new method is demonstrated to outperform a variety of state-of-the-art solutions, including wavelet-based, tree-based, convolution-based methods, as well as modern deep learning methods, through intensive numerical simulations and a real EEG data analysis for epilepsy classification.
Related papers
- AHDMIL: Asymmetric Hierarchical Distillation Multi-Instance Learning for Fast and Accurate Whole-Slide Image Classification [51.525891360380285]
AHDMIL is an Asymmetric Hierarchical Distillation Multi-Instance Learning framework.<n>It eliminates irrelevant patches through a two-step training process.<n>It consistently outperforms previous state-of-the-art methods in both classification performance and inference speed.
arXiv Detail & Related papers (2025-08-07T07:47:16Z) - Interval-Valued Time Series Classification Using $D_K$-Distance [0.0]
We introduce a classification approach that treats intervals as unified entities.<n>In theory, we derived a sharper excess risk bound for deep multiclassifiers based on offset Rademacher complexity.
arXiv Detail & Related papers (2025-04-07T01:31:31Z) - Adaptive Classification of Interval-Valued Time Series [0.0]
We propose an adaptive approach for interval-valued time series classification.<n>We transform interval-valued time series representations into images based on point-valued time series imaging methods.
arXiv Detail & Related papers (2025-04-04T09:52:40Z) - MFRS: A Multi-Frequency Reference Series Approach to Scalable and Accurate Time-Series Forecasting [51.94256702463408]
Time series predictability is derived from periodic characteristics at different frequencies.<n>We propose a novel time series forecasting method based on multi-frequency reference series correlation analysis.<n> Experiments on major open and synthetic datasets show state-of-the-art performance.
arXiv Detail & Related papers (2025-03-11T11:40:14Z) - TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling [67.02157180089573]
Time series pre-training has recently garnered wide attention for its potential to reduce labeling expenses and benefit various downstream tasks.
This paper proposes TimeSiam as a simple but effective self-supervised pre-training framework for Time series based on Siamese networks.
arXiv Detail & Related papers (2024-02-04T13:10:51Z) - Shapelet-based Model-agnostic Counterfactual Local Explanations for Time
Series Classification [5.866975269666861]
We propose a model-agnostic instance-based post-hoc explainability method for time series classification.
The proposed algorithm, namely Time-CF, leverages shapelets and TimeGAN to provide counterfactual explanations for arbitrary time series classifiers.
arXiv Detail & Related papers (2024-02-02T11:57:53Z) - COSTI: a New Classifier for Sequences of Temporal Intervals [0.0]
We develop a novel method for classification operating directly on sequences of temporal intervals.
The proposed method remains at a high level of accuracy and obtains better performance while avoiding shortcomings connected to operating on transformed data.
arXiv Detail & Related papers (2022-04-28T12:55:06Z) - Early Time-Series Classification Algorithms: An Empirical Comparison [59.82930053437851]
Early Time-Series Classification (ETSC) is the task of predicting the class of incoming time-series by observing as few measurements as possible.
We evaluate six existing ETSC algorithms on publicly available data, as well as on two newly introduced datasets.
arXiv Detail & Related papers (2022-03-03T10:43:56Z) - Cluster-and-Conquer: A Framework For Time-Series Forecasting [94.63501563413725]
We propose a three-stage framework for forecasting high-dimensional time-series data.
Our framework is highly general, allowing for any time-series forecasting and clustering method to be used in each step.
When instantiated with simple linear autoregressive models, we are able to achieve state-of-the-art results on several benchmark datasets.
arXiv Detail & Related papers (2021-10-26T20:41:19Z) - Theoretical Insights Into Multiclass Classification: A High-dimensional
Asymptotic View [82.80085730891126]
We provide the first modernally precise analysis of linear multiclass classification.
Our analysis reveals that the classification accuracy is highly distribution-dependent.
The insights gained may pave the way for a precise understanding of other classification algorithms.
arXiv Detail & Related papers (2020-11-16T05:17:29Z) - Complexity Measures and Features for Times Series classification [0.0]
We propose a set of characteristics capable of extracting information on the structure of the time series to face time series classification problems.
The experimental results of our proposal show no statistically significant differences from the second and third best models of the state-of-the-art.
arXiv Detail & Related papers (2020-02-27T11:08:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.