論文の概要: BERT4ETH: A Pre-trained Transformer for Ethereum Fraud Detection
- arxiv url: http://arxiv.org/abs/2303.18138v2
- Date: Mon, 30 Oct 2023 20:03:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-02 03:32:26.041091
- Title: BERT4ETH: A Pre-trained Transformer for Ethereum Fraud Detection
- Title(参考訳): BERT4ETH:Ethereumフラッド検出のためのトレーニング済み変換器
- Authors: Sihao Hu, Zhen Zhang, Bingqiao Luo, Shengliang Lu, Bingsheng He, Ling
Liu
- Abstract要約: BERT4ETHは、様々な不正行為を検出するための事前訓練されたTransformerアカウント表現抽出器である。
BERT4ETHはトランザクション固有の動的シーケンシャルパターンをキャプチャするTransformerの優れたモデリング機能を備えている。
実験により,BERT4ETHは,フィッシングアカウントの検出や匿名化タスクにおいて,最先端の手法よりも優れた性能を示した。
- 参考スコア(独自算出の注目度): 29.518411879700263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As various forms of fraud proliferate on Ethereum, it is imperative to
safeguard against these malicious activities to protect susceptible users from
being victimized. While current studies solely rely on graph-based fraud
detection approaches, it is argued that they may not be well-suited for dealing
with highly repetitive, skew-distributed and heterogeneous Ethereum
transactions. To address these challenges, we propose BERT4ETH, a universal
pre-trained Transformer encoder that serves as an account representation
extractor for detecting various fraud behaviors on Ethereum. BERT4ETH features
the superior modeling capability of Transformer to capture the dynamic
sequential patterns inherent in Ethereum transactions, and addresses the
challenges of pre-training a BERT model for Ethereum with three practical and
effective strategies, namely repetitiveness reduction, skew alleviation and
heterogeneity modeling. Our empirical evaluation demonstrates that BERT4ETH
outperforms state-of-the-art methods with significant enhancements in terms of
the phishing account detection and de-anonymization tasks. The code for
BERT4ETH is available at: https://github.com/git-disl/BERT4ETH.
- Abstract(参考訳): 様々な詐欺がethereumで拡散するので、これらの悪意のある活動に対して保護し、脆弱なユーザーを犠牲にしないようにすることが不可欠である。
現在の研究はグラフベースの不正検出アプローチのみに依存しているが、高度に繰り返し、歪んだ分散、異種ethereumトランザクションを扱うのに適していない可能性がある。
これらの課題に対処するために、ethereum上でさまざまな不正行為を検出するためのアカウント表現抽出器として機能するユニバーサルプリトレーニングトランスコーダbert4ethを提案する。
BERT4ETHは、Ethereumトランザクション固有の動的シーケンシャルパターンをキャプチャするTransformerの優れたモデリング機能を備えており、EthereumのBERTモデルを3つの実践的で効果的な戦略、すなわち反復性削減、スキュー緩和、異種性モデリングで事前トレーニングする際の課題に対処する。
実験により,BERT4ETHは,フィッシングアカウントの検出や匿名化タスクにおいて,最先端の手法よりも優れた性能を示した。
BERT4ETHのコードは以下の通りである。
関連論文リスト
- Enhancing Ethereum Fraud Detection via Generative and Contrastive Self-supervision [4.497245600377944]
本稿では,メタIFD(Meta-IFD)という2つの自己スーパービジョン強化詐欺検出フレームワークを提案する。
この枠組みは、最初はアカウントの相互作用を増強する生成的自己スーパービジョン機構を導入し、続いて様々な行動パターンを区別する対照的な自己スーパービジョン機構を導入した。
ソースコードは近いうちにGitHubでリリースされる予定だ。
論文 参考訳(メタデータ) (2024-08-01T15:30:43Z) - Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection [3.877894934465948]
Bitcoinは暗号通貨の主要なグローバルプラットフォームの一つとなり、金融エコシステムの多様化を促進する上で重要な役割を果たしている。
従来の規制手法は通常、機能エンジニアリングや大規模トランザクショングラフマイニングを通じて悪意のあるアカウントを検出する。
本稿では,TGC4Ethというトランザクショングラフ圧縮手法を提案する。
論文 参考訳(メタデータ) (2024-05-14T02:21:20Z) - FRAD: Front-Running Attacks Detection on Ethereum using Ternary
Classification Model [3.929929061618338]
独自のセキュリティ脅威であるフロントランニング攻撃は、ブロックチェーントランザクションの整合性に重大な課題を生じさせる。
これらの攻撃シナリオでは、悪意のあるアクターが他のユーザのトランザクションアクティビティを監視し、より高い手数料で自身のトランザクションを戦略的に送信する。
第三次分類モデルを用いたFRAD(Front-Running Attacks Detection)という新しい検出手法を提案する。
実験により,Multilayer Perceptron (MLP)分類器は前走攻撃の検出において最高の性能を示し,精度84.59%,F1スコア84.60%を達成した。
論文 参考訳(メタデータ) (2023-11-24T14:42:29Z) - Towards General Visual-Linguistic Face Forgery Detection [95.73987327101143]
ディープフェイクは現実的な顔操作であり、セキュリティ、プライバシー、信頼に深刻な脅威をもたらす可能性がある。
既存の方法は、このタスクを、デジタルラベルまたはマスク信号を使用して検出モデルをトレーニングするバイナリ分類として扱う。
本稿では, 微粒な文レベルのプロンプトをアノテーションとして用いた, VLFFD (Visual-Linguistic Face Forgery Detection) という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-07-31T10:22:33Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
本稿では,異常なブロックチェーントランザクションを検出するための動的,リアルタイムなアプローチを提案する。
提案するツールであるBlockGPTは、ブロックチェーンアクティビティのトレース表現を生成し、大規模な言語モデルをスクラッチからトレーニングして、リアルタイム侵入検出システムとして機能させる。
論文 参考訳(メタデータ) (2023-04-25T11:56:18Z) - Explainable Ponzi Schemes Detection on Ethereum [1.3812010983144802]
ポンツィスキームは最も一般的な詐欺の一つである。
本稿では,実世界のスマートポンジ契約を検出する分類器を提案する。
優れた分類品質を保証し、AI技術を用いた分類への影響を調査する、小型で効果的な機能のセットを特定します。
論文 参考訳(メタデータ) (2023-01-12T08:38:23Z) - Self-supervised Incremental Deep Graph Learning for Ethereum Phishing
Scam Detection [15.350215512903361]
グラフニューラルネットワーク(GNN)は、様々なノード分類タスクにおいて有望な性能を示している。
実世界の複雑なグラフに自然に抽象化できるトランザクションデータでは、ラベルの不足と大量のトランザクションデータがGNNの手法を利用するのを困難にしている。
フィッシング詐欺検出問題に対する自己教師付きインクリメンタルグラフ学習モデル(SIEGE)を提案する。
論文 参考訳(メタデータ) (2021-06-18T15:06:26Z) - ESCORT: Ethereum Smart COntRacTs Vulnerability Detection using Deep
Neural Network and Transfer Learning [80.85273827468063]
既存の機械学習ベースの脆弱性検出方法は制限され、スマートコントラクトが脆弱かどうかのみ検査される。
スマートコントラクトのための初のDeep Neural Network(DNN)ベースの脆弱性検出フレームワークであるESCORTを提案する。
ESCORTは6種類の脆弱性に対して平均95%のF1スコアを達成し,検出時間は契約あたり0.02秒であることを示す。
論文 参考訳(メタデータ) (2021-03-23T15:04:44Z) - BERT-ATTACK: Adversarial Attack Against BERT Using BERT [77.82947768158132]
離散データ(テキストなど)に対するアドリアック攻撃は、連続データ(画像など)よりも難しい。
対戦型サンプルを生成するための高品質で効果的な方法である textbfBERT-Attack を提案する。
本手法は、成功率と摂動率の両方において、最先端の攻撃戦略より優れている。
論文 参考訳(メタデータ) (2020-04-21T13:30:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。