Constrained Optimization of Rank-One Functions with Indicator Variables
- URL: http://arxiv.org/abs/2303.18158v2
- Date: Mon, 27 Nov 2023 23:12:48 GMT
- Title: Constrained Optimization of Rank-One Functions with Indicator Variables
- Authors: Soroosh Shafiee and Fatma K{\i}l{\i}n\c{c}-Karzan
- Abstract summary: optimization problems involving a rank-one convex function over constraints modeling restrictions on the support of the decision variables emerge in various machine learning applications.
We propose a constructive approach that exploits a hidden conic structure induced by perspective functions.
This enables us to systematically give perspective formulations for the convex hull descriptions of sets with nonlinear separable or non-separable objective functions, sign constraints on continuous variables, and constraints on indicator variables.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Optimization problems involving minimization of a rank-one convex function
over constraints modeling restrictions on the support of the decision variables
emerge in various machine learning applications. These problems are often
modeled with indicator variables for identifying the support of the continuous
variables. In this paper we investigate compact extended formulations for such
problems through perspective reformulation techniques. In contrast to the
majority of previous work that relies on support function arguments and
disjunctive programming techniques to provide convex hull results, we propose a
constructive approach that exploits a hidden conic structure induced by
perspective functions. To this end, we first establish a convex hull result for
a general conic mixed-binary set in which each conic constraint involves a
linear function of independent continuous variables and a set of binary
variables. We then demonstrate that extended representations of sets associated
with epigraphs of rank-one convex functions over constraints modeling indicator
relations naturally admit such a conic representation. This enables us to
systematically give perspective formulations for the convex hull descriptions
of these sets with nonlinear separable or non-separable objective functions,
sign constraints on continuous variables, and combinatorial constraints on
indicator variables. We illustrate the efficacy of our results on sparse
nonnegative logistic regression problems.
Related papers
- Nonparametric Partial Disentanglement via Mechanism Sparsity: Sparse
Actions, Interventions and Sparse Temporal Dependencies [58.179981892921056]
This work introduces a novel principle for disentanglement we call mechanism sparsity regularization.
We propose a representation learning method that induces disentanglement by simultaneously learning the latent factors.
We show that the latent factors can be recovered by regularizing the learned causal graph to be sparse.
arXiv Detail & Related papers (2024-01-10T02:38:21Z) - Variational Annealing on Graphs for Combinatorial Optimization [7.378582040635655]
We show that an autoregressive approach which captures statistical dependencies among solution variables yields superior performance on many popular CO problems.
We introduce subgraph tokenization in which the configuration of a set of solution variables is represented by a single token.
arXiv Detail & Related papers (2023-11-23T18:56:51Z) - Score-based Causal Representation Learning with Interventions [54.735484409244386]
This paper studies the causal representation learning problem when latent causal variables are observed indirectly.
The objectives are: (i) recovering the unknown linear transformation (up to scaling) and (ii) determining the directed acyclic graph (DAG) underlying the latent variables.
arXiv Detail & Related papers (2023-01-19T18:39:48Z) - Discrete-Continuous Smoothing and Mapping [8.90077503980675]
We describe a general approach to smoothing and mapping with a class of discrete-continuous factor graphs commonly encountered in robotics applications.
We provide a library, DC-SAM, extending existing tools for optimization problems defined in terms of factor graphs to the setting of discrete-continuous models.
arXiv Detail & Related papers (2022-04-25T19:31:44Z) - On the convex hull of convex quadratic optimization problems with
indicators [2.867517731896504]
We show that a convex hull description of the associated mixed-integer set in an extended space with a quadratic number of additional variables consists of a single positive semidefinite constraint and linear constraints.
The new theory presented here paves the way toward utilizing polyhedral methods to analyze the convex hull of mixed-integer nonlinear sets.
arXiv Detail & Related papers (2022-01-02T18:04:52Z) - A Variational Inference Approach to Inverse Problems with Gamma
Hyperpriors [60.489902135153415]
This paper introduces a variational iterative alternating scheme for hierarchical inverse problems with gamma hyperpriors.
The proposed variational inference approach yields accurate reconstruction, provides meaningful uncertainty quantification, and is easy to implement.
arXiv Detail & Related papers (2021-11-26T06:33:29Z) - Conditional gradient methods for stochastically constrained convex
minimization [54.53786593679331]
We propose two novel conditional gradient-based methods for solving structured convex optimization problems.
The most important feature of our framework is that only a subset of the constraints is processed at each iteration.
Our algorithms rely on variance reduction and smoothing used in conjunction with conditional gradient steps, and are accompanied by rigorous convergence guarantees.
arXiv Detail & Related papers (2020-07-07T21:26:35Z) - Ideal formulations for constrained convex optimization problems with
indicator variables [2.578242050187029]
We study the convexification of a class of convex optimization problems with indicator variables and constraints on the indicators.
Unlike most of the previous work on convexification of sparse regression problems, we simultaneously consider the nonlinear non-separable objective, indicator variables, and constraints.
We derive ideal convexifications for problems with hierarchy, multi-collinearity, and sparsity constraints.
arXiv Detail & Related papers (2020-06-30T21:07:10Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Consistent Second-Order Conic Integer Programming for Learning Bayesian
Networks [2.7473982588529653]
We study the problem of learning the sparse DAG structure of a BN from continuous observational data.
The optimal solution to this mathematical program is known to have desirable statistical properties under certain conditions.
We propose a concrete early stopping criterion to terminate the branch-and-bound process in order to obtain a near-optimal solution.
arXiv Detail & Related papers (2020-05-29T00:13:15Z) - Invariant Feature Coding using Tensor Product Representation [75.62232699377877]
We prove that the group-invariant feature vector contains sufficient discriminative information when learning a linear classifier.
A novel feature model that explicitly consider group action is proposed for principal component analysis and k-means clustering.
arXiv Detail & Related papers (2019-06-05T07:15:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.