Identifiable Convex-Concave Regression via Sub-gradient Regularised Least Squares
- URL: http://arxiv.org/abs/2506.18078v1
- Date: Sun, 22 Jun 2025 15:53:12 GMT
- Title: Identifiable Convex-Concave Regression via Sub-gradient Regularised Least Squares
- Authors: William Chung,
- Abstract summary: We propose a novel nonparametric regression method that models complex input-relationships as the sum of convex and concave components.<n>The method-ICCNLS-decomposes sub-constrained shape-constrained additive decomposition.
- Score: 1.9580473532948397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a novel nonparametric regression method that models complex input-output relationships as the sum of convex and concave components. The method-Identifiable Convex-Concave Nonparametric Least Squares (ICCNLS)-decomposes the target function into additive shape-constrained components, each represented via sub-gradient-constrained affine functions. To address the affine ambiguity inherent in convex-concave decompositions, we introduce global statistical orthogonality constraints, ensuring that residuals are uncorrelated with both intercept and input variables. This enforces decomposition identifiability and improves interpretability. We further incorporate L1, L2 and elastic net regularisation on sub-gradients to enhance generalisation and promote structural sparsity. The proposed method is evaluated on synthetic and real-world datasets, including healthcare pricing data, and demonstrates improved predictive accuracy and model simplicity compared to conventional CNLS and difference-of-convex (DC) regression approaches. Our results show that statistical identifiability, when paired with convex-concave structure and sub-gradient regularisation, yields interpretable models suited for forecasting, benchmarking, and policy evaluation.
Related papers
- Semi-parametric Functional Classification via Path Signatures Logistic Regression [1.210026603224224]
We propose Path Signatures Logistic Regression, a semi-parametric framework for classifying vector-valued functional data.<n>Our results highlight the practical and theoretical benefits of integrating rough path theory into modern functional data analysis.
arXiv Detail & Related papers (2025-07-09T08:06:50Z) - Sparse Interpretable Deep Learning with LIES Networks for Symbolic Regression [22.345828337550575]
Symbolic regression aims to discover closed-form mathematical expressions that accurately describe data.<n>Existing SR methods often rely on population-based search or autoregressive modeling.<n>We introduce LIES (Logarithm, Identity, Exponential, Sine), a fixed neural network architecture with interpretable primitive activations that are optimized to model symbolic expressions.
arXiv Detail & Related papers (2025-06-09T22:05:53Z) - Partial Transportability for Domain Generalization [56.37032680901525]
Building on the theory of partial identification and transportability, this paper introduces new results for bounding the value of a functional of the target distribution.<n>Our contribution is to provide the first general estimation technique for transportability problems.<n>We propose a gradient-based optimization scheme for making scalable inferences in practice.
arXiv Detail & Related papers (2025-03-30T22:06:37Z) - Learning a Class of Mixed Linear Regressions: Global Convergence under General Data Conditions [1.9295130374196499]
Mixed linear regression (MLR) has attracted increasing attention because of its great theoretical and practical importance in nonlinear relationships by utilizing a mixture of linear regression sub-models.<n>Although considerable efforts have been devoted to the learning problem of such systems, most existing investigations impose the strict independent and identically distributed (i.i.d.) or distributed PE conditions.
arXiv Detail & Related papers (2025-03-24T09:57:39Z) - Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - Stable Nonconvex-Nonconcave Training via Linear Interpolation [51.668052890249726]
This paper presents a theoretical analysis of linearahead as a principled method for stabilizing (large-scale) neural network training.
We argue that instabilities in the optimization process are often caused by the nonmonotonicity of the loss landscape and show how linear can help by leveraging the theory of nonexpansive operators.
arXiv Detail & Related papers (2023-10-20T12:45:12Z) - Understanding Augmentation-based Self-Supervised Representation Learning
via RKHS Approximation and Regression [53.15502562048627]
Recent work has built the connection between self-supervised learning and the approximation of the top eigenspace of a graph Laplacian operator.
This work delves into a statistical analysis of augmentation-based pretraining.
arXiv Detail & Related papers (2023-06-01T15:18:55Z) - Vector-Valued Least-Squares Regression under Output Regularity
Assumptions [73.99064151691597]
We propose and analyse a reduced-rank method for solving least-squares regression problems with infinite dimensional output.
We derive learning bounds for our method, and study under which setting statistical performance is improved in comparison to full-rank method.
arXiv Detail & Related papers (2022-11-16T15:07:00Z) - Posterior-Aided Regularization for Likelihood-Free Inference [23.708122045184698]
Posterior-Aided Regularization (PAR) is applicable to learning the density estimator, regardless of the model structure.
We provide a unified estimation method of PAR to estimate both reverse KL term and mutual information term with a single neural network.
arXiv Detail & Related papers (2021-02-15T16:59:30Z) - A Nonconvex Framework for Structured Dynamic Covariance Recovery [24.471814126358556]
We propose a flexible yet interpretable model for high-dimensional data with time-varying second order statistics.
Motivated by the literature, we quantify factorization and smooth temporal data.
We show that our approach outperforms existing baselines.
arXiv Detail & Related papers (2020-11-11T07:09:44Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.