Towards A Unified Agent with Foundation Models
- URL: http://arxiv.org/abs/2307.09668v1
- Date: Tue, 18 Jul 2023 22:37:30 GMT
- Title: Towards A Unified Agent with Foundation Models
- Authors: Norman Di Palo, Arunkumar Byravan, Leonard Hasenclever, Markus
Wulfmeier, Nicolas Heess, Martin Riedmiller
- Abstract summary: We investigate how to embed and leverage such abilities in Reinforcement Learning (RL) agents.
We design a framework that uses language as the core reasoning tool, exploring how this enables an agent to tackle a series of fundamental RL challenges.
We demonstrate substantial performance improvements over baselines in exploration efficiency and ability to reuse data from offline datasets.
- Score: 18.558328028366816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Language Models and Vision Language Models have recently demonstrated
unprecedented capabilities in terms of understanding human intentions,
reasoning, scene understanding, and planning-like behaviour, in text form,
among many others. In this work, we investigate how to embed and leverage such
abilities in Reinforcement Learning (RL) agents. We design a framework that
uses language as the core reasoning tool, exploring how this enables an agent
to tackle a series of fundamental RL challenges, such as efficient exploration,
reusing experience data, scheduling skills, and learning from observations,
which traditionally require separate, vertically designed algorithms. We test
our method on a sparse-reward simulated robotic manipulation environment, where
a robot needs to stack a set of objects. We demonstrate substantial performance
improvements over baselines in exploration efficiency and ability to reuse data
from offline datasets, and illustrate how to reuse learned skills to solve
novel tasks or imitate videos of human experts.
Related papers
- Transformer-based Causal Language Models Perform Clustering [20.430255724239448]
We introduce a simplified instruction-following task and use synthetic datasets to analyze a Transformer-based causal language model.
Our findings suggest that the model learns task-specific information by clustering data within its hidden space, with this clustering process evolving dynamically during learning.
arXiv Detail & Related papers (2024-02-19T14:02:31Z) - Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - RT-2: Vision-Language-Action Models Transfer Web Knowledge to Robotic
Control [140.48218261864153]
We study how vision-language models trained on Internet-scale data can be incorporated directly into end-to-end robotic control.
Our approach leads to performant robotic policies and enables RT-2 to obtain a range of emergent capabilities from Internet-scale training.
arXiv Detail & Related papers (2023-07-28T21:18:02Z) - Accelerating exploration and representation learning with offline
pre-training [52.6912479800592]
We show that exploration and representation learning can be improved by separately learning two different models from a single offline dataset.
We show that learning a state representation using noise-contrastive estimation and a model of auxiliary reward can significantly improve the sample efficiency on the challenging NetHack benchmark.
arXiv Detail & Related papers (2023-03-31T18:03:30Z) - Implicit Offline Reinforcement Learning via Supervised Learning [83.8241505499762]
Offline Reinforcement Learning (RL) via Supervised Learning is a simple and effective way to learn robotic skills from a dataset collected by policies of different expertise levels.
We show how implicit models can leverage return information and match or outperform explicit algorithms to acquire robotic skills from fixed datasets.
arXiv Detail & Related papers (2022-10-21T21:59:42Z) - Learning and Retrieval from Prior Data for Skill-based Imitation
Learning [47.59794569496233]
We develop a skill-based imitation learning framework that extracts temporally extended sensorimotor skills from prior data.
We identify several key design choices that significantly improve performance on novel tasks.
arXiv Detail & Related papers (2022-10-20T17:34:59Z) - Self-Supervised Visual Representation Learning Using Lightweight
Architectures [0.0]
In self-supervised learning, a model is trained to solve a pretext task, using a data set whose annotations are created by a machine.
We critically examine the most notable pretext tasks to extract features from image data.
We study the performance of various self-supervised techniques keeping all other parameters uniform.
arXiv Detail & Related papers (2021-10-21T14:13:10Z) - Parrot: Data-Driven Behavioral Priors for Reinforcement Learning [79.32403825036792]
We propose a method for pre-training behavioral priors that can capture complex input-output relationships observed in successful trials.
We show how this learned prior can be used for rapidly learning new tasks without impeding the RL agent's ability to try out novel behaviors.
arXiv Detail & Related papers (2020-11-19T18:47:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.