論文の概要: Equivalence of Additive and Multiplicative Coupling in Spiking Neural
Networks
- arxiv url: http://arxiv.org/abs/2304.00112v2
- Date: Tue, 11 Apr 2023 12:14:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-12 17:42:39.023781
- Title: Equivalence of Additive and Multiplicative Coupling in Spiking Neural
Networks
- Title(参考訳): スパイクニューラルネットワークにおける加算結合と乗算結合の等価性
- Authors: Georg B\"orner, Fabio Schittler Neves, Marc Timme
- Abstract要約: スパイキングニューラルネットワークモデルは、生物学的ニューロンの回路の創発的集団力学を特徴付ける。
加法結合を持つスパイクニューラルネットワークモデルは乗法結合を持つモデルと等価であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spiking neural network models characterize the emergent collective dynamics
of circuits of biological neurons and help engineer neuro-inspired solutions
across fields. Most dynamical systems' models of spiking neural networks
typically exhibit one of two major types of interactions: First, the response
of a neuron's state variable to incoming pulse signals (spikes) may be additive
and independent of its current state. Second, the response may depend on the
current neuron's state and multiply a function of the state variable. Here we
reveal that spiking neural network models with additive coupling are equivalent
to models with multiplicative coupling for simultaneously modified intrinsic
neuron time evolution. As a consequence, the same collective dynamics can be
attained by state-dependent multiplicative and constant (state-independent)
additive coupling. Such a mapping enables the transfer of theoretical insights
between spiking neural network models with different types of interaction
mechanisms as well as simpler and more effective engineering applications.
- Abstract(参考訳): スパイキングニューラルネットワークモデルは、生体ニューロンの回路の創発的な集団ダイナミクスを特徴付け、分野をまたがって神経にインスパイアされたソリューションを構築するのに役立つ。
スパイクニューラルネットワークのほとんどの力学系のモデルでは、2つの主要な相互作用の1つが示される: まず、入力パルス信号(スパイクス)に対するニューロンの状態変数の応答は、現在の状態から独立している可能性がある。
第2に、応答は現在のニューロンの状態に依存し、状態変数の関数を乗算することができる。
ここでは,加法的結合を伴うスパイクニューラルネットワークモデルと乗法結合を持つモデルが等価であることを明らかにする。
その結果、同じ集団力学は状態依存の乗法と定数(状態非依存)加法的結合によって達成できる。
このようなマッピングは、異なるタイプの相互作用機構を持つスパイキングニューラルネットワークモデル間の理論的洞察の伝達を可能にすると同時に、よりシンプルで効率的なエンジニアリング応用を可能にする。
関連論文リスト
- Modeling dynamic neural activity by combining naturalistic video stimuli and stimulus-independent latent factors [5.967290675400836]
本稿では,刺激非依存の潜伏因子とともに映像入力を組み込んだ確率論的モデルを提案する。
マウスV1ニューロン反応のトレーニングとテストを行った結果、ビデオのみのモデルよりもログライクな結果が得られた。
その結果,学習した潜伏因子はマウスの行動と強く相関していることがわかった。
論文 参考訳(メタデータ) (2024-10-21T16:01:39Z) - Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
しきい値単位の動的代替として人工内蔵ニューロン(AKOrN)を導入する。
このアイデアは、幅広いタスクにまたがってパフォーマンス改善をもたらすことを示しています。
これらの経験的結果は、神経表現の最も基本的なレベルにおいて、私たちの仮定の重要性を示していると信じている。
論文 参考訳(メタデータ) (2024-10-17T17:47:54Z) - Learning dynamic representations of the functional connectome in
neurobiological networks [41.94295877935867]
我々は、生きた行動する動物のニューロン間の動的親和性を学ぶために、教師なしのアプローチを導入する。
本研究では,ニューロン間の因果関係を強く予測し,行動を生成する手法を提案する。
論文 参考訳(メタデータ) (2024-02-21T19:54:25Z) - Learning with Chemical versus Electrical Synapses -- Does it Make a
Difference? [61.85704286298537]
バイオインスパイアされたニューラルネットワークは、ニューラルネットワークの理解を深め、AIシステムの最先端を改善する可能性がある。
我々は,光リアルな自律走行シミュレータを用いて自律車線維持実験を行い,その性能を種々の条件下で評価する。
論文 参考訳(メタデータ) (2023-11-21T13:07:20Z) - Astrocytes as a mechanism for meta-plasticity and contextually-guided
network function [2.66269503676104]
アストロサイトは、ユビキタスでエニグマティックな非神経細胞である。
アストロサイトは脳機能や神経計算においてより直接的で活発な役割を果たす。
論文 参考訳(メタデータ) (2023-11-06T20:31:01Z) - Self-Evolutionary Reservoir Computer Based on Kuramoto Model [1.7072337666116733]
生物学的にインスパイアされたニューラルネットワークとして、貯水池コンピューティング(RC)は情報処理においてユニークなアドバンテージを持っている。
本研究では,人的知識を必要とせず,手元にある特定の問題に適応できる構造的自律開発貯水池計算モデルを提案する。
論文 参考訳(メタデータ) (2023-01-25T15:53:39Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
本稿では,MPATH(Membrane Potential and Activation Threshold Homeostasis)ニューロンモデルを提案する。
このモデルにより、ニューロンは入力が提示されたときに自動的に活性を調節することで動的平衡の形式を維持することができる。
実験は、モデルがその入力から適応し、継続的に学習する能力を示す。
論文 参考訳(メタデータ) (2021-04-22T04:01:32Z) - The distribution of inhibitory neurons in the C. elegans connectome
facilitates self-optimization of coordinated neural activity [78.15296214629433]
線虫Caenorhabditis elegansの神経系は、昆虫のサイズが小さいにもかかわらず著しく複雑である。
一般的な課題は、システムレベルでの神経組織と神経活動の関係をよりよく理解することである。
我々は,各ニューロンの神経伝達物質同定を近似した,C. elegans Connectomeの抽象シミュレーションモデルを実装した。
論文 参考訳(メタデータ) (2020-10-28T23:11:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。