論文の概要: Graph-Based Representation Learning of Neuronal Dynamics and Behavior
- arxiv url: http://arxiv.org/abs/2410.00665v2
- Date: Fri, 30 May 2025 12:09:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.464524
- Title: Graph-Based Representation Learning of Neuronal Dynamics and Behavior
- Title(参考訳): グラフに基づく神経運動と行動の表現学習
- Authors: Moein Khajehnejad, Forough Habibollahi, Ahmad Khajehnejad, Chris French, Brett J. Kagan, Adeel Razi,
- Abstract要約: 本稿では,時間変動ニューロン接続をモデル化する新しいフレームワークTAVRNNを紹介する。
TAVRNNは、解釈可能な集団レベルの表現を維持しながら、単一単位レベルで潜伏ダイナミクスを学習する。
TAVRNNは,(1)自由行動ラットの電気生理学的データ,(2)到達作業中の霊長類体性感覚皮質記録,(3)仮想ゲーム環境と相互作用するDishBrainプラットフォーム内の生物学的ニューロンの3つのデータセットで検証した。
- 参考スコア(独自算出の注目度): 2.3859858429583665
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how neuronal networks reorganize in response to external stimuli and give rise to behavior is a central challenge in neuroscience and artificial intelligence. However, existing methods often fail to capture the evolving structure of neural connectivity in ways that capture its relationship to behavior, especially in dynamic, uncertain, or high-dimensional settings with sufficient resolution or interpretability. We introduce the Temporal Attention-enhanced Variational Graph Recurrent Neural Network (TAVRNN), a novel framework that models time-varying neuronal connectivity by integrating probabilistic graph learning with temporal attention mechanisms. TAVRNN learns latent dynamics at the single-unit level while maintaining interpretable population-level representations, to identify key connectivity patterns linked to behavior. TAVRNN generalizes across diverse neural systems and modalities, demonstrating state-of-the-art classification and clustering performance. We validate TAVRNN on three diverse datasets: (1) electrophysiological data from a freely behaving rat, (2) primate somatosensory cortex recordings during a reaching task, and (3) biological neurons in the DishBrain platform interacting with a virtual game environment. Our method outperforms state-of-the-art dynamic embedding techniques, revealing previously unreported relationships between adaptive behavior and the evolving topological organization of neural networks. These findings demonstrate that TAVRNN offers a powerful and generalizable approach for modeling neural dynamics across experimental and synthetic biological systems. Its architecture is modality-agnostic and scalable, making it applicable across a wide range of neural recording platforms and behavioral paradigms.
- Abstract(参考訳): 外部からの刺激に反応して神経ネットワークがどのように再編成され、行動を引き起こすかを理解することは、神経科学と人工知能における中心的な課題である。
しかし、既存の手法は、特に動的、不確実、あるいは十分な解像度や解釈可能性を持った高次元の設定において、行動との関係を捉える方法で、神経接続の進化する構造を捉えることができないことが多い。
本稿では,確率的グラフ学習と時間的注意機構を統合することで,時間的変化のあるニューロン接続をモデル化する新しいフレームワークTAVRNNを紹介する。
TAVRNNは、解釈可能な集団レベルの表現を維持しながら、単一ユニットレベルで潜伏ダイナミクスを学び、行動に関連する重要な接続パターンを特定する。
TAVRNNは、さまざまなニューラルネットワークとモダリティをまたがって一般化し、最先端の分類とクラスタリングのパフォーマンスを示す。
TAVRNNは,(1)自由行動ラットの電気生理学的データ,(2)到達作業中の霊長類体性感覚皮質記録,(3)仮想ゲーム環境と相互作用するDishBrainプラットフォーム内の生物学的ニューロンの3つのデータセットで検証した。
提案手法は,適応行動とニューラルネットワークの進化的トポロジカルな構造との関係を明らかにすることによって,最先端の動的埋め込み技術より優れる。
これらの結果から, TAVRNNは, 実験的および合成生物学的システムにわたって, 神経力学をモデル化するための強力で一般化可能なアプローチを提供することが示された。
そのアーキテクチャはモダリティに依存しないスケーラブルで、幅広いニューラル記録プラットフォームや行動パラダイムに適用できる。
関連論文リスト
- Unveiling the Potential of Spiking Dynamics in Graph Representation Learning through Spatial-Temporal Normalization and Coding Strategies [15.037300421748107]
スパイキングニューラルネットワーク(SNN)は、ニューロンのエネルギー効率と事象駆動処理を再現する可能性から、かなりの関心を集めている。
本研究は,グラフ表現学習の強化におけるスパイキングダイナミクスの特質とメリットについて考察する。
スパイキングダイナミクスを取り入れたスパイクに基づくグラフニューラルネットワークモデルを提案し,新しい時空間特徴正規化(STFN)技術により強化した。
論文 参考訳(メタデータ) (2024-07-30T02:53:26Z) - Inferring stochastic low-rank recurrent neural networks from neural data [5.179844449042386]
計算神経科学における中心的な目的は、大きなニューロンの活動と基礎となる力学系を関連付けることである。
低ランクリカレントニューラルネットワーク(RNN)は、トラクタブルダイナミクスを持つことによって、そのような解釈可能性を示す。
そこで本研究では,低ランクRNNをモンテカルロ変分法に適合させる手法を提案する。
論文 参考訳(メタデータ) (2024-06-24T15:57:49Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Predicting Brain Age using Transferable coVariance Neural Networks [119.45320143101381]
我々は最近,サンプル共分散行列で動作する共分散ニューラルネットワーク(VNN)について検討した。
本稿では,大脳皮質厚みデータを用いた脳年齢推定におけるVNNの有用性を示す。
以上の結果から、VNNは脳年齢推定のためのマルチスケールおよびマルチサイト転送性を示すことが明らかとなった。
アルツハイマー病(AD)の脳年齢の文脈では,健常者に対してVNNを用いて予測される脳年齢がADに対して有意に上昇していることから,VNNの出力は解釈可能であることが示された。
論文 参考訳(メタデータ) (2022-10-28T18:58:34Z) - DynDepNet: Learning Time-Varying Dependency Structures from fMRI Data
via Dynamic Graph Structure Learning [58.94034282469377]
下流予測タスクによって誘導されるfMRIデータの最適時間変化依存性構造を学習する新しい手法であるDynDepNetを提案する。
実世界のfMRIデータセットの実験は、性別分類のタスクにおいて、DynDepNetが最先端の結果を達成することを実証している。
論文 参考訳(メタデータ) (2022-09-27T16:32:11Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
我々は、個々のニューロンの応答を明示的にモデル化するNDTベースのアーキテクチャであるSpatioTemporal Neural Data Transformer (STNDT)を紹介する。
本モデルは,4つのニューラルデータセット間での神経活動の推定において,アンサンブルレベルでの最先端性能を実現することを示す。
論文 参考訳(メタデータ) (2022-06-09T18:54:23Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Modeling Spatio-Temporal Dynamics in Brain Networks: A Comparison of
Graph Neural Network Architectures [0.5033155053523041]
グラフニューラルネットワーク(GNN)は、新しい構造化グラフ信号の解釈を可能にする。
基板上の局所的な機能的相互作用を学習することにより、GNNベースのアプローチが大規模ネットワーク研究に堅牢に拡張可能であることを示す。
論文 参考訳(メタデータ) (2021-12-08T12:57:13Z) - Overcoming the Domain Gap in Contrastive Learning of Neural Action
Representations [60.47807856873544]
神経科学の基本的な目標は、神経活動と行動の関係を理解することである。
我々は,ハエが自然に生み出す行動からなる新しいマルチモーダルデータセットを作成した。
このデータセットと新しい拡張セットは、神経科学における自己教師あり学習手法の適用を加速することを約束します。
論文 参考訳(メタデータ) (2021-11-29T15:27:51Z) - Generalizable Machine Learning in Neuroscience using Graph Neural
Networks [0.0]
ニューラルネットワークは、ニューロンレベルの動的予測と行動状態の分類の両方において、非常によく機能することを示す。
実験の結果, グラフニューラルネットワークは構造モデルよりも優れ, 目に見えない生物の一般化に優れていた。
論文 参考訳(メタデータ) (2020-10-16T18:09:46Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。