論文の概要: RADIFUSION: A multi-radiomics deep learning based breast cancer risk
prediction model using sequential mammographic images with image attention
and bilateral asymmetry refinement
- arxiv url: http://arxiv.org/abs/2304.00257v1
- Date: Sat, 1 Apr 2023 08:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 18:52:07.520449
- Title: RADIFUSION: A multi-radiomics deep learning based breast cancer risk
prediction model using sequential mammographic images with image attention
and bilateral asymmetry refinement
- Title(参考訳): radifusion:画像の注意と左右の非対称性を考慮した連続的マンモグラフィ画像を用いた乳癌リスク予測モデル
- Authors: Hong Hui Yeoh, Andrea Liew, Rapha\"el Phan, Fredrik Strand, Kartini
Rahmat, Tuong Linh Nguyen, John L. Hopper, Maxine Tan
- Abstract要約: 本研究は, 画像注意放射能, ゲーティング機構, 左右非対称性に基づく微調整など, 様々な深層学習機構の重要性を強調した。
乳がんリスク評価のための強力なツールとして, RADIfusionが有用であることが示唆された。
- 参考スコア(独自算出の注目度): 0.36355629235144304
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer is a significant public health concern and early detection is
critical for triaging high risk patients. Sequential screening mammograms can
provide important spatiotemporal information about changes in breast tissue
over time. In this study, we propose a deep learning architecture called
RADIFUSION that utilizes sequential mammograms and incorporates a linear image
attention mechanism, radiomic features, a new gating mechanism to combine
different mammographic views, and bilateral asymmetry-based finetuning for
breast cancer risk assessment. We evaluate our model on a screening dataset
called Cohort of Screen-Aged Women (CSAW) dataset. Based on results obtained on
the independent testing set consisting of 1,749 women, our approach achieved
superior performance compared to other state-of-the-art models with area under
the receiver operating characteristic curves (AUCs) of 0.905, 0.872 and 0.866
in the three respective metrics of 1-year AUC, 2-year AUC and > 2-year AUC. Our
study highlights the importance of incorporating various deep learning
mechanisms, such as image attention, radiomic features, gating mechanism, and
bilateral asymmetry-based fine-tuning, to improve the accuracy of breast cancer
risk assessment. We also demonstrate that our model's performance was enhanced
by leveraging spatiotemporal information from sequential mammograms. Our
findings suggest that RADIFUSION can provide clinicians with a powerful tool
for breast cancer risk assessment.
- Abstract(参考訳): 乳がんは公衆衛生上の重要な問題であり、早期発見は高リスク患者を治療するために重要である。
シークエンシャルスクリーニングマンモグラムは、経時的に乳房組織の変化について重要な時空間情報を提供する。
本研究では,シーケンシャルマンモグラムを活用し,線状画像注目機構,放射線特徴量,異なるマンモグラフィビューを結合する新たなゲーティング機構,乳がんリスク評価のための左右非対称性に基づく微調整機構を組み込んだ,radifusionと呼ばれるディープラーニングアーキテクチャを提案する。
我々は、CSAWデータセットと呼ばれるスクリーニングデータセットを用いて、モデルを評価した。
その結果,1,749名の女性を対象に,1年間のAUC,2年間のAUC,2年間のAUCの3つの指標において,受信機動作特性曲線(AUC) 0.905, 0.872, 0.866の領域を有する他の最先端モデルと比較して,優れた性能を示した。
本研究は, 乳がんリスク評価の精度を高めるために, 画像注意, 放射線学的特徴, ゲーティング機構, 左右非対称性に基づく微調整などの深層学習機構を取り入れることの重要性を強調した。
また, 逐次マンモグラムからの時空間情報を活用することで, モデルの性能が向上したことを示す。
乳がんリスク評価のための強力なツールとしてRADIFUSIONが有用であることが示唆された。
関連論文リスト
- TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs [49.69047720285225]
そこで本研究では,乳房側葉構造をよりよく近似するために,マルチスケールのトポロジ構造を明示的に抽出する新しいトポロジカルアプローチを提案する。
VICTREファントム乳房データセットを用いてemphTopoTxRを実験的に検証した。
本研究の質的および定量的分析は,乳房組織における画像診断におけるトポロジカルな挙動を示唆するものである。
論文 参考訳(メタデータ) (2024-11-05T19:35:10Z) - Mammo-Clustering:A Weakly Supervised Multi-view Global-Local Context Clustering Network for Detection and Classification in Mammography [13.581151516877238]
文脈クラスタリングに基づく乳がん早期検診モデルを提案する。
本モデルは, 乳がん検診における医師の負担軽減と, 未発達地域の女性に対する乳がん検診の可能性を高める可能性を示唆する。
論文 参考訳(メタデータ) (2024-09-23T10:17:13Z) - Towards Non-invasive and Personalized Management of Breast Cancer Patients from Multiparametric MRI via A Large Mixture-of-Modality-Experts Model [19.252851972152957]
本稿では,マルチパラメトリックMRI情報を統一構造内に組み込んだMOMEについて報告する。
MOMEは乳癌の正確かつ堅牢な同定を証明した。
BI-RADS 4患者の生検の必要性を7.3%減らし、AUROC0.709で3重陰性乳癌を分類し、AUROC0.694でネオアジュバント化学療法に対する病理学的完全反応を予測することができる。
論文 参考訳(メタデータ) (2024-08-08T05:04:13Z) - Radiomics-guided Multimodal Self-attention Network for Predicting Pathological Complete Response in Breast MRI [3.6852491526879687]
本研究では,ダイナミックコントラスト強調画像(DCE)とADCマップを用いた乳癌患者のpCR予測モデルを提案する。
本手法は, 腫瘍関連領域からの特徴抽出を誘導するために放射線を利用した自己注意機構を備えたエンコーダを用いて, DCE MRI と ADC から特徴抽出を行う。
論文 参考訳(メタデータ) (2024-06-05T04:49:55Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - Longitudinal Mammogram Risk Prediction [6.28887425442237]
我々は最先端の機械学習モデルを拡張し、任意の数の縦マンモグラフィーを摂取し、将来の乳がんリスクを予測する。
以上の結果から,より長い歴史(例年4回のマンモグラム)が将来の乳癌のリスクを予測する精度を著しく向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2024-04-29T19:52:09Z) - Leveraging Transformers to Improve Breast Cancer Classification and Risk
Assessment with Multi-modal and Longitudinal Data [3.982926115291704]
マルチモーダルトランス (MMT) はマンモグラフィーと超音波を相乗的に利用するニューラルネットワークである。
MMTは、現在の検査と以前の画像を比較することで、時間的組織変化を追跡する。
5年間のリスク予測では、MMTはAUROCの0.826を達成し、従来のマンモグラフィーベースのリスクモデルより優れている。
論文 参考訳(メタデータ) (2023-11-06T16:01:42Z) - Post-Hoc Explainability of BI-RADS Descriptors in a Multi-task Framework
for Breast Cancer Detection and Segmentation [48.08423125835335]
MT-BI-RADSは乳房超音波(BUS)画像における腫瘍検出のための新しい深層学習手法である。
放射線科医が腫瘍の悪性度を予測するための意思決定プロセスを理解するための3つのレベルの説明を提供する。
論文 参考訳(メタデータ) (2023-08-27T22:07:42Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - High-resolution synthesis of high-density breast mammograms: Application
to improved fairness in deep learning based mass detection [48.88813637974911]
深層学習に基づくコンピュータ支援検出システムは乳癌検出において優れた性能を示した。
高密度の乳房は、高密度の組織がマスを覆ったりシミュレートしたりできるため、検出性能が劣っている。
本研究は,高密度乳房における高密度フルフィールドデジタルマンモグラムを用いた質量検出性能の向上を目的とする。
論文 参考訳(メタデータ) (2022-09-20T15:57:12Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
骨分解性骨病変の進展を正確に予測し,可視化する深層学習フレームワークを開発した。
乳癌患者の骨格関連事象(SRE)を予防するための治療戦略の計画と評価を支援する。
論文 参考訳(メタデータ) (2022-03-20T21:00:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。