Medical Pathologies Prediction : Systematic Review and Proposed Approach
- URL: http://arxiv.org/abs/2304.00311v1
- Date: Sat, 1 Apr 2023 13:35:17 GMT
- Title: Medical Pathologies Prediction : Systematic Review and Proposed Approach
- Authors: Chaimae Taoussi, Imad Hafidi, Abdelmoutalib Metrane
- Abstract summary: We have analyzed and examined different works concerning the exploitation of the most recent technologies such as big data, artificial intelligence, machine learning, and deep learning for the improvement of health care.
We propose our general approach concentrating on the collection, preprocessing and clustering of medical data to facilitate access, after analysis, to the patients and health professionals to predict the most frequent pathologies with better precision within a notable timeframe.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The healthcare sector is an important pillar of every community, numerous
research studies have been carried out in this context to optimize medical
processes and improve care quality and facilitate patient management. In this
article we have analyzed and examined different works concerning the
exploitation of the most recent technologies such as big data, artificial
intelligence, machine learning, and deep learning for the improvement of health
care, which enabled us to propose our general approach concentrating on the
collection, preprocessing and clustering of medical data to facilitate access,
after analysis, to the patients and health professionals to predict the most
frequent pathologies with better precision within a notable timeframe.
keywords: Healthcare, big data, artificial intelligence, automatic language
processing, data mining, predictive models.
Related papers
- Patient-centered data science: an integrative framework for evaluating and predicting clinical outcomes in the digital health era [0.0]
This study proposes a novel, integrative framework for patient-centered data science in the digital health era.
We developed a multidimensional model that combines traditional clinical data with patient-reported outcomes, social determinants of health, and multi-omic data to create comprehensive digital patient representations.
arXiv Detail & Related papers (2024-07-31T02:36:17Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Med is designed to train a policy model capable of auto-generating medical visual instruction data.
We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks.
arXiv Detail & Related papers (2024-06-28T15:01:23Z) - A Survey of Few-Shot Learning for Biomedical Time Series [3.845248204742053]
Data-driven models have tremendous potential to assist clinical diagnosis and improve patient care.
An emerging approach to overcome the scarcity of labeled data is to augment AI methods with human-like capabilities to learn new tasks with limited examples, called few-shot learning.
This survey provides a comprehensive review and comparison of few-shot learning methods for biomedical time series applications.
arXiv Detail & Related papers (2024-05-03T21:22:27Z) - Patient-Centric Knowledge Graphs: A Survey of Current Methods,
Challenges, and Applications [2.913761513290171]
Patient-Centric Knowledge Graphs (PCKGs) represent an important shift in healthcare that focuses on individualized patient care.
PCKGs integrate various types of health data to provide healthcare professionals with a comprehensive understanding of a patient's health.
This literature review explores the methodologies, challenges, and opportunities associated with PCKGs.
arXiv Detail & Related papers (2024-02-20T00:07:55Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - MD-Manifold: A Medical-Distance-Based Representation Learning Approach
for Medical Concept and Patient Representation [6.795388490479779]
Representing medical concepts for healthcare analytical tasks requires incorporating medical domain knowledge and prior data information.
Our proposed framework, MD-Manifold, introduces a novel approach to medical concept and patient representation.
It includes a new data augmentation approach, concept distance metric, and patient-patient network to incorporate crucial medical domain knowledge and prior data information.
arXiv Detail & Related papers (2023-04-30T18:58:32Z) - Privacy-preserving machine learning for healthcare: open challenges and
future perspectives [72.43506759789861]
We conduct a review of recent literature concerning Privacy-Preserving Machine Learning (PPML) for healthcare.
We primarily focus on privacy-preserving training and inference-as-a-service.
The aim of this review is to guide the development of private and efficient ML models in healthcare.
arXiv Detail & Related papers (2023-03-27T19:20:51Z) - AI Approaches in Processing and Using Data in Personalized Medicine [0.0]
Advanced artificial intelligence techniques offer the opportunity to analyze such big data, consume them, and derive new knowledge to support personalized medical decisions.
New approaches like those based on advanced machine learning, federated learning, transfer learning, explainable artificial intelligence open new paths for more quality use of health and medical data in future.
arXiv Detail & Related papers (2022-07-26T11:11:39Z) - Robust and Efficient Medical Imaging with Self-Supervision [80.62711706785834]
We present REMEDIS, a unified representation learning strategy to improve robustness and data-efficiency of medical imaging AI.
We study a diverse range of medical imaging tasks and simulate three realistic application scenarios using retrospective data.
arXiv Detail & Related papers (2022-05-19T17:34:18Z) - MIMO: Mutual Integration of Patient Journey and Medical Ontology for
Healthcare Representation Learning [49.57261599776167]
We propose an end-to-end robust Transformer-based solution, Mutual Integration of patient journey and Medical Ontology (MIMO) for healthcare representation learning and predictive analytics.
arXiv Detail & Related papers (2021-07-20T07:04:52Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
We present a new benchmarking suite designed specifically for medical sequential decision making.
The Medkit-Learn(ing) Environment is a publicly available Python package providing simple and easy access to high-fidelity synthetic medical data.
arXiv Detail & Related papers (2021-06-08T10:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.