A Survey of Few-Shot Learning for Biomedical Time Series
- URL: http://arxiv.org/abs/2405.02485v1
- Date: Fri, 3 May 2024 21:22:27 GMT
- Title: A Survey of Few-Shot Learning for Biomedical Time Series
- Authors: Chenqi Li, Timothy Denison, Tingting Zhu,
- Abstract summary: Data-driven models have tremendous potential to assist clinical diagnosis and improve patient care.
An emerging approach to overcome the scarcity of labeled data is to augment AI methods with human-like capabilities to learn new tasks with limited examples, called few-shot learning.
This survey provides a comprehensive review and comparison of few-shot learning methods for biomedical time series applications.
- Score: 3.845248204742053
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Advancements in wearable sensor technologies and the digitization of medical records have contributed to the unprecedented ubiquity of biomedical time series data. Data-driven models have tremendous potential to assist clinical diagnosis and improve patient care by improving long-term monitoring capabilities, facilitating early disease detection and intervention, as well as promoting personalized healthcare delivery. However, accessing extensively labeled datasets to train data-hungry deep learning models encounters many barriers, such as long-tail distribution of rare diseases, cost of annotation, privacy and security concerns, data-sharing regulations, and ethical considerations. An emerging approach to overcome the scarcity of labeled data is to augment AI methods with human-like capabilities to leverage past experiences to learn new tasks with limited examples, called few-shot learning. This survey provides a comprehensive review and comparison of few-shot learning methods for biomedical time series applications. The clinical benefits and limitations of such methods are discussed in relation to traditional data-driven approaches. This paper aims to provide insights into the current landscape of few-shot learning for biomedical time series and its implications for future research and applications.
Related papers
- Advancing Histopathology with Deep Learning Under Data Scarcity: A Decade in Review [30.91867799522664]
We present a comprehensive review of deep learning applications in histopathology.
We focus on the challenges posed by data scarcity over the past decade.
We identify underexplored research opportunities.
arXiv Detail & Related papers (2024-10-18T07:29:48Z) - A Survey of Models for Cognitive Diagnosis: New Developments and Future Directions [66.40362209055023]
This paper aims to provide a survey of current models for cognitive diagnosis, with more attention on new developments using machine learning-based methods.
By comparing the model structures, parameter estimation algorithms, model evaluation methods and applications, we provide a relatively comprehensive review of the recent trends in cognitive diagnosis models.
arXiv Detail & Related papers (2024-07-07T18:02:00Z) - Membership Inference Attacks Against Time-Series Models [0.8437187555622164]
Time-series data that contains personal information, particularly in the medical field, presents serious privacy concerns.
We explore existing techniques on time-series models, and introduce new features, focusing on seasonality.
Our results enhance the effectiveness of MIAs in identifying membership, improving the understanding of privacy risks in medical data applications.
arXiv Detail & Related papers (2024-07-03T07:34:49Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Continual Learning in Medical Image Analysis: A Comprehensive Review of Recent Advancements and Future Prospects [5.417947115749931]
Continual learning has emerged as a crucial approach for developing unified and sustainable deep models.
This systematic review paper provides a comprehensive overview of the state-of-the-art in continual learning techniques applied to medical imaging analysis.
arXiv Detail & Related papers (2023-12-28T13:16:03Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Federated Cycling (FedCy): Semi-supervised Federated Learning of
Surgical Phases [57.90226879210227]
FedCy is a semi-supervised learning (FSSL) method that combines FL and self-supervised learning to exploit a decentralized dataset of both labeled and unlabeled videos.
We demonstrate significant performance gains over state-of-the-art FSSL methods on the task of automatic recognition of surgical phases.
arXiv Detail & Related papers (2022-03-14T17:44:53Z) - Distributed Learning Approaches for Automated Chest X-Ray Diagnosis [0.0]
We focus on strategies to cope with privacy issues when a consortium of healthcare institutions needs to train machine learning models for identifying a particular disease.
In particular, in our analysis we investigated the impact of different data distributions in client data and the possible policies on the frequency of data exchange between the institutions.
arXiv Detail & Related papers (2021-10-04T14:22:29Z) - Time Series Prediction using Deep Learning Methods in Healthcare [0.0]
Traditional machine learning methods face two main challenges in dealing with healthcare predictive analytics tasks.
The high-dimensional nature of healthcare data needs labor-intensive processes to select an appropriate set of features for each new task.
Recent deep learning methods have shown promising performance for various healthcare prediction tasks.
arXiv Detail & Related papers (2021-08-30T18:14:27Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.