Metrological detection of multipartite entanglement through dynamical
symmetries
- URL: http://arxiv.org/abs/2304.00564v1
- Date: Sun, 2 Apr 2023 16:18:37 GMT
- Title: Metrological detection of multipartite entanglement through dynamical
symmetries
- Authors: Yu-Ran Zhang, Franco Nori
- Abstract summary: Multipartite entanglement, characterized by the quantum Fisher information (QFI), plays a central role in quantum-enhanced metrology.
We provide a rigorous lower bound on the QFI for the thermal Gibbs states in terms of dynamical symmetries.
Our results reveal a new perspective to detect multipartite entanglement and other generalized variances in an equilibrium system.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multipartite entanglement, characterized by the quantum Fisher information
(QFI), plays a central role in quantum-enhanced metrology and understanding
quantum many-body physics. With a dynamical generalization of the Mazur-Suzuki
relations, we provide a rigorous lower bound on the QFI for the thermal Gibbs
states in terms of dynamical symmetries, i.e., operators with periodic time
dependence. We demonstrate that this bound can be saturated when considering a
complete set of dynamical symmetries. Moreover, this lower bound with dynamical
symmetries can be generalized to the QFI matrix and to the QFI for the thermal
pure states, predicted by the eigenstate thermalization hypothesis. Our results
reveal a new perspective to detect multipartite entanglement and other
generalized variances in an equilibrium system, from its nonstationary
dynamical properties, and is promising for studying emergent nonequilibrium
many-body physics.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - TANGO: Time-Reversal Latent GraphODE for Multi-Agent Dynamical Systems [43.39754726042369]
We propose a simple-yet-effective self-supervised regularization term as a soft constraint that aligns the forward and backward trajectories predicted by a continuous graph neural network-based ordinary differential equation (GraphODE)
It effectively imposes time-reversal symmetry to enable more accurate model predictions across a wider range of dynamical systems under classical mechanics.
Experimental results on a variety of physical systems demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-10-10T08:52:16Z) - Emergence of fluctuating hydrodynamics in chaotic quantum systems [47.187609203210705]
macroscopic fluctuation theory (MFT) was recently developed to model the hydrodynamics of fluctuations.
We perform large-scale quantum simulations that monitor the full counting statistics of particle-number fluctuations in boson ladders.
Our results suggest that large-scale fluctuations of isolated quantum systems display emergent hydrodynamic behavior.
arXiv Detail & Related papers (2023-06-20T11:26:30Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Influence functional of many-body systems: temporal entanglement and
matrix-product state representation [0.0]
Feynman-Vernon influence functional (IF) was originally introduced to describe the effect of a quantum environment on the dynamics of an open quantum system.
We apply the IF approach to describe quantum many-body dynamics in isolated spin systems.
arXiv Detail & Related papers (2021-03-25T10:41:15Z) - Characterizing the dynamical phase diagram of the Dicke model via
classical and quantum probes [0.0]
We study the dynamical phase diagram of the Dicke model in both classical and quantum limits.
Our numerical calculations demonstrate that mean-field features of the dynamics remain valid in the exact quantum dynamics.
Our predictions can be verified in current quantum simulators of the Dicke model including arrays of trapped ions.
arXiv Detail & Related papers (2021-02-03T19:05:56Z) - Symmetry-resolved dynamical purification in synthetic quantum matter [1.2189422792863447]
We show that symmetry-resolved information spreading is inhibited due to the competition of coherent and incoherent dynamics.
Our work shows that symmetry plays a key role as a magnifying glass to characterize many-body dynamics in open quantum systems.
arXiv Detail & Related papers (2021-01-19T19:01:09Z) - Quantum many-body attractors [0.0]
We discuss how an extensive set of strictly local dynamical symmetries can exist in a quantum system.
These strictly local symmetries lead to spontaneous breaking of continuous time-translation symmetry.
We provide an explicit recipe for constructing Hamiltonians featuring local dynamical symmetries.
arXiv Detail & Related papers (2020-08-25T16:52:47Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Experimental simulation of the Parity-Time-symmetric dynamics using
photonics qubits [7.67529162088556]
We experimentally demonstrate the general dynamical evolution of a two-level system under the action of PT symmetric Hamiltonian.
Our work provides a route for further exploiting the exotic properties of PT symmetric Hamiltonian for quantum simulation and quantum information processing.
arXiv Detail & Related papers (2020-04-19T23:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.