Experimental simulation of the Parity-Time-symmetric dynamics using
photonics qubits
- URL: http://arxiv.org/abs/2004.08985v1
- Date: Sun, 19 Apr 2020 23:08:11 GMT
- Title: Experimental simulation of the Parity-Time-symmetric dynamics using
photonics qubits
- Authors: Wei-Chao Gao, Chao Zheng, Lu Liu, Tiejun Wang and Chuan Wang
- Abstract summary: We experimentally demonstrate the general dynamical evolution of a two-level system under the action of PT symmetric Hamiltonian.
Our work provides a route for further exploiting the exotic properties of PT symmetric Hamiltonian for quantum simulation and quantum information processing.
- Score: 7.67529162088556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The concept of parity-time (PT) symmetry originates from the framework of
quantum mechanics, where if the Hamiltonian operator satisfies the commutation
relation with the parity and time operators, it shows all real eigen-energy
spectrum. Recently, PT symmetry was introduced into optics, electronic
circuits, acoustics, and so many other classical fields to further study the
dynamics of the Hamiltonian and the energy of the system. Focusing on the
dynamical evolution of the quantum state under the action of PT symmetric
Hamiltonian, here we experimentally demonstrated the general dynamical
evolution of a two-level system under the PT symmetric Hamiltonian using
single-photon system. By enlarging the system using ancillary qubits and
encoding the subsystem under the non-Hermitian Hamiltonian with post-selection,
the evolution of the state can be observed with a high fidelity when the
successfully parity-time symmetrically evolved subspace is solely considered.
Owing to the effectively operation of the dilation method, our work provides a
route for further exploiting the exotic properties of PT symmetric Hamiltonian
for quantum simulation and quantum information processing.
Related papers
- Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Non-Hermiticity in quantum nonlinear optics through symplectic
transformations [0.0]
We show that second-quantised Hermitian Hamiltonians on the Fock space give rise to non-Hermitian effective Hamiltonians.
We create a quantum optical scheme for simulating arbitrary non-unitary processes by way of singular value decomposition.
arXiv Detail & Related papers (2023-10-06T18:41:46Z) - Metrological detection of multipartite entanglement through dynamical
symmetries [0.0]
Multipartite entanglement, characterized by the quantum Fisher information (QFI), plays a central role in quantum-enhanced metrology.
We provide a rigorous lower bound on the QFI for the thermal Gibbs states in terms of dynamical symmetries.
Our results reveal a new perspective to detect multipartite entanglement and other generalized variances in an equilibrium system.
arXiv Detail & Related papers (2023-04-02T16:18:37Z) - Extension of Noether's theorem in PT-symmetric systems and its
experimental demonstration in an optical setup [0.3957768262206625]
We extend Noether's theorem to a class of significant PT -symmetric systems.
We experimentally investigate the extended Noether's theorem in PT -symmetric single-qubit and two-qubit systems.
arXiv Detail & Related papers (2023-01-18T05:32:06Z) - PT-symmetric quantum Rabi model [2.8009256749748257]
We explore the PT-symmetric quantum Rabi model, which describes a PT-symmetric qubit coupled to a quantized light field.
Rich and exotic behaviors are observed in both strong and ultra-strong coupling regimes.
Our work extends the theory of PT symmetry into the full quantum light-matter interaction regime and provides insights that can be readily enlarged to a broad class of quantum optical systems.
arXiv Detail & Related papers (2022-12-13T14:00:51Z) - Symmetric Pruning in Quantum Neural Networks [111.438286016951]
Quantum neural networks (QNNs) exert the power of modern quantum machines.
QNNs with handcraft symmetric ansatzes generally experience better trainability than those with asymmetric ansatzes.
We propose the effective quantum neural tangent kernel (EQNTK) to quantify the convergence of QNNs towards the global optima.
arXiv Detail & Related papers (2022-08-30T08:17:55Z) - Photonic quantum simulations of coupled $PT$-symmetric Hamiltonians [0.0]
We use a programmable integrated photonic chip to simulate a model comprised of twin pairs of $PT$-symmetric Hamiltonians, with each the time reverse of its twin.
We simulate quantum dynamics across exceptional points including two- and three-particle interference, and a particle-trembling behaviour that arises due to interference between subsystems undergoing time-reversed evolutions.
arXiv Detail & Related papers (2022-02-01T11:54:10Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.