論文の概要: MalIoT: Scalable and Real-time Malware Traffic Detection for IoT
Networks
- arxiv url: http://arxiv.org/abs/2304.00623v1
- Date: Sun, 2 Apr 2023 20:47:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-04 17:01:25.987514
- Title: MalIoT: Scalable and Real-time Malware Traffic Detection for IoT
Networks
- Title(参考訳): MalIoT:IoTネットワークのスケーラブルでリアルタイムなマルウェアトラフィック検出
- Authors: Ethan Weitkamp, Yusuke Satani, Adam Omundsen, Jingwen Wang, Peilong Li
- Abstract要約: このシステムは、Apache KafkaやApache Sparkといった分散システムを使用することで、IoTデバイスの指数的な成長を処理できる。
これらの技術は協力して、スケーラブルなパフォーマンスと高い精度を提供するシステムを構築する。
- 参考スコア(独自算出の注目度): 6.426881566121233
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The machine learning approach is vital in Internet of Things (IoT) malware
traffic detection due to its ability to keep pace with the ever-evolving nature
of malware. Machine learning algorithms can quickly and accurately analyze the
vast amount of data produced by IoT devices, allowing for the real-time
identification of malicious network traffic. The system can handle the
exponential growth of IoT devices thanks to the usage of distributed systems
like Apache Kafka and Apache Spark, and Intel's oneAPI software stack
accelerates model inference speed, making it a useful tool for real-time
malware traffic detection. These technologies work together to create a system
that can give scalable performance and high accuracy, making it a crucial tool
for defending against cyber threats in smart communities and medical
institutions.
- Abstract(参考訳): 機械学習アプローチは、マルウェアの進化を続ける性質に追随する能力のため、IoT(Internet of Things)マルウェアのトラフィック検出において不可欠である。
機械学習アルゴリズムは、IoTデバイスが生成する膨大なデータを迅速かつ正確に分析し、悪意のあるネットワークトラフィックをリアルタイムに識別することができる。
このシステムは、Apache KafkaやApache Sparkなどの分散システムを使用することで、IoTデバイスの指数的な成長を処理でき、IntelのワンAPIソフトウェアスタックはモデル推論速度を加速し、リアルタイムのマルウェアトラフィック検出に有用なツールである。
これらの技術は、スケーラブルなパフォーマンスと高い精度を提供するシステムを構築するために協力し、スマートコミュニティや医療機関におけるサイバー脅威を防御するための重要なツールとなる。
関連論文リスト
- Enhancing IoT Malware Detection through Adaptive Model Parallelism and Resource Optimization [0.6856683556201506]
本研究では,IoTデバイスに適したマルウェア検出手法を提案する。
リソースの可用性、進行中のワークロード、通信コストに基づいて、マルウェア検出タスクはデバイス上で動的に割り当てられるか、隣接するIoTノードにオフロードされる。
実験結果から,本手法はデバイス上での推測に比べて9.8倍の高速化を実現していることがわかった。
論文 参考訳(メタデータ) (2024-04-12T20:51:25Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
我々は、分散化された侵入検知システムの共有モデル(IDS)を協調訓練するために、フェデレートラーニング(FL)を導入する。
FLEKDは従来のモデル融合法よりも柔軟な凝集法を実現する。
実験の結果,提案手法は,速度と性能の両面で,局所訓練と従来のFLよりも優れていた。
論文 参考訳(メタデータ) (2024-01-22T14:16:37Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - Malware Classification using Deep Neural Networks: Performance
Evaluation and Applications in Edge Devices [0.0]
複数のディープニューラルネットワーク(DNN)は、マルウェアのバイナリを検出し分類するように設計されている。
エッジデバイスにこれらのDNNモデルをデプロイして、特にリソース制約のあるシナリオにおいて、リアルタイムな分類を可能にすることは、大規模なIoTシステムにとって不可欠であることが証明されている。
本研究は,マルウェア検出技術の進歩に寄与し,マルウェアの早期検出にサイバーセキュリティ対策を統合することの重要性を強調した。
論文 参考訳(メタデータ) (2023-08-21T16:34:46Z) - IoTFlowGenerator: Crafting Synthetic IoT Device Traffic Flows for Cyber
Deception [31.822346303953164]
ハニーポットは攻撃者の意図を理解し、攻撃者を騙して時間とリソースを消費する重要なセキュリティツールである。
より良いハニーポットを構築し、サイバー詐欺能力を高めるためには、IoTハニーポットは現実的なネットワークトラフィックフローを生成する必要がある。
本稿では,ユーザとIoTデバイスのインタラクションによって,実際のネットワークトラフィックを模倣するトラフィックフローを生成するための,新たなディープラーニングベースのアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-01T16:24:07Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
我々は、エネルギー効率と高速モデルトレーニングのための交通信号認識に強力なスパイクニューラルネットワーク(SNN)を導入している。
数値的な結果から,提案するフェデレーションSNNは,従来のフェデレーション畳み込みニューラルネットワークよりも精度,ノイズ免疫性,エネルギー効率に優れていたことが示唆された。
論文 参考訳(メタデータ) (2022-05-28T03:11:48Z) - Enable Deep Learning on Mobile Devices: Methods, Systems, and
Applications [46.97774949613859]
ディープニューラルネットワーク(DNN)は人工知能(AI)分野において前例のない成功を収めた
しかし、それらの優れた性能は、計算の複雑さのかなりのコストを伴っている。
本稿では,効率的なディープラーニング手法,システム,応用について概説する。
論文 参考訳(メタデータ) (2022-04-25T16:52:48Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
本研究は,画像認識タスクに適用したオフライントレーニングによるSNN用ハードウェアアクセラレータの開発について述べる。
この設計はXilinx Artix-7 FPGAをターゲットにしており、利用可能なハードウェアリソースの40%を合計で使用している。
分類時間を3桁に短縮し、ソフトウェアと比較すると精度にわずか4.5%の影響を与えている。
論文 参考訳(メタデータ) (2022-01-18T13:59:22Z) - Malware Squid: A Novel IoT Malware Traffic Analysis Framework using
Convolutional Neural Network and Binary Visualisation [2.309914459672557]
ニューラルネットワークとバイナリビジュアライゼーションを用いた新しいIoTマルウェアトラフィック分析手法を提案する。
提案手法の最大の動機は、新しいマルウェア(ゼロデイマルウェア)を素早く検出し分類することである。
論文 参考訳(メタデータ) (2021-09-08T00:21:45Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - IoT Malware Network Traffic Classification using Visual Representation
and Deep Learning [1.7205106391379026]
ディープラーニングと視覚表現を用いた新しいIoTマルウェアトラフィック分析手法を提案する。
提案手法における悪意あるネットワークトラフィックの検出はパッケージレベルで動作し,検出時間を大幅に短縮する。
Residual Neural Network(ResNet50)の実験結果は、マルウェアのトラフィックを検出するための94.50%の精度で、非常に有望である。
論文 参考訳(メタデータ) (2020-10-04T22:44:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。