論文の概要: Malware Classification using Deep Neural Networks: Performance
Evaluation and Applications in Edge Devices
- arxiv url: http://arxiv.org/abs/2310.06841v1
- Date: Mon, 21 Aug 2023 16:34:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-23 03:34:29.260967
- Title: Malware Classification using Deep Neural Networks: Performance
Evaluation and Applications in Edge Devices
- Title(参考訳): ディープニューラルネットワークを用いたマルウェア分類:エッジデバイスの性能評価と応用
- Authors: Akhil M R, Adithya Krishna V Sharma, Harivardhan Swamy, Pavan A,
Ashray Shetty, Anirudh B Sathyanarayana
- Abstract要約: 複数のディープニューラルネットワーク(DNN)は、マルウェアのバイナリを検出し分類するように設計されている。
エッジデバイスにこれらのDNNモデルをデプロイして、特にリソース制約のあるシナリオにおいて、リアルタイムな分類を可能にすることは、大規模なIoTシステムにとって不可欠であることが証明されている。
本研究は,マルウェア検出技術の進歩に寄与し,マルウェアの早期検出にサイバーセキュリティ対策を統合することの重要性を強調した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the increasing extent of malware attacks in the present day along with
the difficulty in detecting modern malware, it is necessary to evaluate the
effectiveness and performance of Deep Neural Networks (DNNs) for malware
classification. Multiple DNN architectures can be designed and trained to
detect and classify malware binaries. Results demonstrate the potential of DNNs
in accurately classifying malware with high accuracy rates observed across
different malware types. Additionally, the feasibility of deploying these DNN
models on edge devices to enable real-time classification, particularly in
resource-constrained scenarios proves to be integral to large IoT systems. By
optimizing model architectures and leveraging edge computing capabilities, the
proposed methodologies achieve efficient performance even with limited
resources. This study contributes to advancing malware detection techniques and
emphasizes the significance of integrating cybersecurity measures for the early
detection of malware and further preventing the adverse effects caused by such
attacks. Optimal considerations regarding the distribution of security tasks to
edge devices are addressed to ensure that the integrity and availability of
large scale IoT systems are not compromised due to malware attacks, advocating
for a more resilient and secure digital ecosystem.
- Abstract(参考訳): 現代のマルウェア検出の難しさとともに,近年のマルウェア攻撃の増加とともに,マルウェア分類におけるDeep Neural Networks(DNN)の有効性と性能を評価する必要がある。
複数のdnnアーキテクチャは、マルウェアバイナリの検出と分類のために設計および訓練することができる。
その結果,DNNがマルウェアの種類によって高い精度で正確な分類を行う可能性が示された。
さらに、これらのDNNモデルをエッジデバイスにデプロイして、特にリソース制約のあるシナリオにおいて、リアルタイムな分類を可能にすることは、大規模なIoTシステムにとって不可欠であることが証明されている。
モデルアーキテクチャを最適化し、エッジコンピューティング能力を活用することにより、限られたリソースでも効率的な性能を実現する。
本研究は、マルウェア検出技術の進歩に寄与し、マルウェアの早期検出のためのサイバーセキュリティ対策の統合と、攻撃による有害な影響の防止の重要性を強調している。
エッジデバイスへのセキュリティタスクの分散に関する最適な考慮事項は、大規模iotシステムの整合性と可用性がマルウェア攻撃によって損なわれないようにし、よりレジリエントでセキュアなディジタルエコシステムを提唱する。
関連論文リスト
- MDHP-Net: Detecting Injection Attacks on In-vehicle Network using Multi-Dimensional Hawkes Process and Temporal Model [44.356505647053716]
本稿では、インジェクションアタックとして知られる特定のタイプのサイバーアタックについて考察する。
これらのインジェクション攻撃は時間の経過とともに効果があり、徐々にネットワークトラフィックを操作し、車両の正常な機能を破壊している。
本稿では,MDHP-LSTMブロックに最適なMDHPパラメータを組み込んだインジェクション攻撃検出器MDHP-Netを提案する。
論文 参考訳(メタデータ) (2024-11-15T15:05:01Z) - Empowering Malware Detection Efficiency within Processing-in-Memory Architecture [0.7910057416898179]
機械学習を利用したマルウェア検出技術が人気を集めている。
ニューラルネットワークアーキテクチャの大きな欠点の1つは、その相当な計算リソース要件である。
本稿では,PIM(Processing-in-Memory)ベースのアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-04-12T21:28:43Z) - Optimizing Malware Detection in IoT Networks: Leveraging Resource-Aware Distributed Computing for Enhanced Security [0.6856683556201506]
マルウェアとして知られる悪意のあるアプリケーションは、IoTデバイスやネットワークに重大な脅威をもたらす。
我々は,IoTネットワーク用の分散コンピューティングと統合された,リソースとワークロードを意識した新たなマルウェア検出フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-12T21:11:29Z) - Enhancing IoT Malware Detection through Adaptive Model Parallelism and Resource Optimization [0.6856683556201506]
本研究では,IoTデバイスに適したマルウェア検出手法を提案する。
リソースの可用性、進行中のワークロード、通信コストに基づいて、マルウェア検出タスクはデバイス上で動的に割り当てられるか、隣接するIoTノードにオフロードされる。
実験結果から,本手法はデバイス上での推測に比べて9.8倍の高速化を実現していることがわかった。
論文 参考訳(メタデータ) (2024-04-12T20:51:25Z) - Case Study: Neural Network Malware Detection Verification for Feature and Image Datasets [5.198311758274061]
我々は、敵に対する具体的な保護を確保するのに役立つ新しい検証ドメインを提案する。
マルウェア分類と2種類の共通マルウェアデータセットについて述べる。
マルウェア分類の検証の改善と改善に必要な課題と今後の考察について概説する。
論文 参考訳(メタデータ) (2024-04-08T17:37:22Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
本稿ではIoTマルウェアの分類について述べる。
攻撃の主要なターゲットと使用済みのエクスプロイトが特定され、特定のマルウェアを参照される。
現在のIoT攻撃の大部分は、相容れない低い労力と高度なレベルであり、既存の技術的措置によって緩和される可能性がある。
論文 参考訳(メタデータ) (2023-12-01T16:10:43Z) - A survey on hardware-based malware detection approaches [45.24207460381396]
ハードウェアベースのマルウェア検出アプローチは、ハードウェアパフォーマンスカウンタと機械学習技術を活用する。
このアプローチを慎重に分析し、最も一般的な方法、アルゴリズム、ツール、および輪郭を形成するデータセットを解明します。
この議論は、協調的有効性のための混合ハードウェアとソフトウェアアプローチの構築、ハードウェア監視ユニットの不可欠な拡張、ハードウェアイベントとマルウェアアプリケーションの間の相関関係の理解を深めている。
論文 参考訳(メタデータ) (2023-03-22T13:00:41Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - RL-DistPrivacy: Privacy-Aware Distributed Deep Inference for low latency
IoT systems [41.1371349978643]
本稿では,流通戦略の再考を通じて協調的深層推論の安全性を目標とするアプローチを提案する。
我々は、この手法を最適化として定式化し、コ推論のレイテンシとプライバシーレベルのデータのトレードオフを確立する。
論文 参考訳(メタデータ) (2022-08-27T14:50:00Z) - A Review of Confidentiality Threats Against Embedded Neural Network
Models [0.0]
本稿では,組み込みディープニューラルネットワーク(DNN)モデルの機密性を標的とした攻撃について述べる。
私たちは、Side-Channel Analysis(SCA)がモデルの機密性を侵害できる比較的未踏のバイアスであるという事実を強調しています。
論文 参考訳(メタデータ) (2021-05-04T10:27:20Z) - Increasing the Confidence of Deep Neural Networks by Coverage Analysis [71.57324258813674]
本稿では、異なる安全でない入力に対してモデルを強化するために、カバレッジパラダイムに基づく軽量な監視アーキテクチャを提案する。
実験結果から,提案手法は強力な対向例とアウト・オブ・ディストリビューション・インプットの両方を検出するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2021-01-28T16:38:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。